CSSE, Shenzhen University
Abstract:Speculative decoding (SD) is a promising method for accelerating the decoding process of Large Language Models (LLMs). The efficiency of SD primarily hinges on the consistency between the draft model and the verify model. However, existing drafting approaches typically require additional modules to be trained, which can be challenging to implement and ensure compatibility across various LLMs. In this paper, we propose CLaSp, an in-context layer-skipping strategy for self-speculative decoding. Unlike prior methods, CLaSp does not require additional drafting modules or extra training. Instead, it employs a plug-and-play mechanism by skipping intermediate layers of the verify model to construct a compressed draft model. Specifically, we develop a dynamic programming algorithm that optimizes the layer-skipping process by leveraging the complete hidden states from the last verification stage as an objective. This enables CLaSp to dynamically adjust its layer-skipping strategy after each verification stage, without relying on pre-optimized sets of skipped layers. Experimental results across diverse downstream tasks demonstrate that CLaSp achieves a speedup of 1.3x ~ 1.7x on LLaMA3 series models without altering the original distribution of the generated text.
Abstract:This paper develops an ensemble method for fine-tuning a language model to multiple datasets. Existing methods, such as quantized LoRA (QLoRA), are efficient when adapting to a single dataset. When training on multiple datasets of different tasks, a common setup in practice, it remains unclear how to design an efficient adaptation for fine-tuning language models. We propose to use an ensemble of multiple smaller adapters instead of a single adapter per task. We design an efficient algorithm that partitions $n$ datasets into $m$ groups, where $m$ is typically much smaller than $n$ in practice, and train one adapter for each group before taking a weighted combination to form the ensemble. The algorithm leverages a first-order approximation property of low-rank adaptation to quickly obtain the fine-tuning performances of dataset combinations since methods like LoRA stay close to the base model. Hence, we use the gradients of the base model to estimate its behavior during fine-tuning. Empirically, this approximation holds with less than $1\%$ error on models with up to $34$ billion parameters, leading to an estimation of true fine-tuning performances under $5\%$ error while speeding up computation compared to base fine-tuning by $105$ times. When applied to fine-tune Llama and GPT models on ten text classification tasks, our approach provides up to $10\%$ higher average test accuracy over QLoRA, with only $9\%$ more FLOPs. On a Llama model with $34$ billion parameters, an ensemble of QLoRA increases test accuracy by $3\%$ compared to QLoRA, with only $8\%$ more FLOPs.
Abstract:Traditional RLHF optimizes language models with coarse, scalar rewards that mask the fine-grained reasons behind success or failure, leading to slow and opaque learning. Recent work augments RL with textual critiques through prompting or reflection, improving interpretability but leaving model parameters untouched. We introduce Text2Grad, a reinforcement-learning paradigm that turns free-form textual feedback into span-level gradients. Given human (or programmatic) critiques, Text2Grad aligns each feedback phrase with the relevant token spans, converts these alignments into differentiable reward signals, and performs gradient updates that directly refine the offending portions of the model's policy. This yields precise, feedback-conditioned adjustments instead of global nudges. Text2Grad is realized through three components: (1) a high-quality feedback-annotation pipeline that pairs critiques with token spans; (2) a fine-grained reward model that predicts span-level reward on answer while generating explanatory critiques; and (3) a span-level policy optimizer that back-propagates natural-language gradients. Across summarization, code generation, and question answering, Text2Grad consistently surpasses scalar-reward RL and prompt-only baselines, providing both higher task metrics and richer interpretability. Our results demonstrate that natural-language feedback, when converted to gradients, is a powerful signal for fine-grained policy optimization. The code for our method is available at https://github.com/microsoft/Text2Grad
Abstract:Retrieval-augmented generation (RAG) generally enhances large language models' (LLMs) ability to solve knowledge-intensive tasks. But RAG may also lead to performance degradation due to imperfect retrieval and the model's limited ability to leverage retrieved content. In this work, we evaluate the robustness of LLMs in practical RAG setups (henceforth retrieval robustness). We focus on three research questions: (1) whether RAG is always better than non-RAG; (2) whether more retrieved documents always lead to better performance; (3) and whether document orders impact results. To facilitate this study, we establish a benchmark of 1500 open-domain questions, each with retrieved documents from Wikipedia. We introduce three robustness metrics, each corresponds to one research question. Our comprehensive experiments, involving 11 LLMs and 3 prompting strategies, reveal that all of these LLMs exhibit surprisingly high retrieval robustness; nonetheless, different degrees of imperfect robustness hinders them from fully utilizing the benefits of RAG.
Abstract:In recent years, more and more attention has been paid to the learning of 3D human representation. However, the complexity of lots of hand-defined human body constraints and the absence of supervision data limit that the existing works controllably and accurately represent the human body in views of semantics and representation ability. In this paper, we propose a human body representation with controllable fine-grained semantics and high precison of reconstruction in an unsupervised learning framework. In particularly, we design a whole-aware skeleton-grouped disentangle strategy to learn a correspondence between geometric semantical measurement of body and latent codes, which facilitates the control of shape and posture of human body by modifying latent coding paramerers. With the help of skeleton-grouped whole-aware encoder and unsupervised disentanglement losses, our representation model is learned by an unsupervised manner. Besides, a based-template residual learning scheme is injected into the encoder to ease of learning human body latent parameter in complicated body shape and pose spaces. Because of the geometrically meaningful latent codes, it can be used in a wide range of applications, from human body pose transfer to bilinear latent code interpolation. Further more, a part-aware decoder is utlized to promote the learning of controllable fine-grained semantics. The experimental results on public 3D human datasets show that the method has the ability of precise reconstruction.
Abstract:Despite recent progress in text-to-image (T2I) generation, existing models often struggle to faithfully capture user intentions from short and under-specified prompts. While prior work has attempted to enhance prompts using large language models (LLMs), these methods frequently generate stylistic or unrealistic content due to insufficient grounding in visual semantics and real-world composition. Inspired by recent advances in reasoning for language model, we propose RePrompt, a novel reprompting framework that introduces explicit reasoning into the prompt enhancement process via reinforcement learning. Instead of relying on handcrafted rules or stylistic rewrites, our method trains a language model to generate structured, self-reflective prompts by optimizing for image-level outcomes. The tailored reward models assesse the generated images in terms of human preference, semantic alignment, and visual composition, providing indirect supervision to refine prompt generation. Our approach enables end-to-end training without human-annotated data. Experiments on GenEval and T2I-Compbench show that RePrompt significantly boosts spatial layout fidelity and compositional generalization across diverse T2I backbones, establishing new state-of-the-art results.
Abstract:This work investigates a practical reconfigurable intelligent surface (RIS)-aided integrated sensing and communication (ISAC) system, where a subset of RIS elements fail to function properly and reflect incident signals randomly towards unintended directions, thereby degrading system performance. To date, no study has addressed such impairments caused by faulty RIS elements in ISAC systems. This work aims to fill the gap. First, to quantify the impact of faulty elements on ISAC performance, we derive the misspecified Cram\'er-Rao bound (MCRB) for sensing parameter estimation and signal-to-interference-and-noise ratio (SINR) for communication quality. Then, to mitigate the performance loss caused by faulty elements, we jointly design the remaining functional RIS phase shifts and transmit beamforming to minimize the MCRB, subject to the communication SINR and transmit power constraints. The resulting optimization problem is highly non-convex due to the intricate structure of the MCRB expression and constant-modulus constraint imposed on RIS. To address this, we reformulate it into a more tractable form and propose a block coordinate descent (BCD) algorithm that incorporates majorization-minimization (MM), successive convex approximation (SCA), and penalization techniques. Simulation results demonstrate that our proposed approach reduces the MCRB performance loss by 24.36% on average compared to the case where the presence of faulty elements is ignored. Furthermore, the performance gain becomes more evident as the number of faulty elements increases.
Abstract:Large language models (LLMs) excel at generating long-form responses, but evaluating their factuality remains challenging due to complex inter-sentence dependencies within the generated facts. Prior solutions predominantly follow a decompose-decontextualize-verify pipeline but often fail to capture essential context and miss key relational facts. In this paper, we introduce VeriFact, a factuality evaluation framework designed to enhance fact extraction by identifying and resolving incomplete and missing facts to support more accurate verification results. Moreover, we introduce FactRBench , a benchmark that evaluates both precision and recall in long-form model responses, whereas prior work primarily focuses on precision. FactRBench provides reference fact sets from advanced LLMs and human-written answers, enabling recall assessment. Empirical evaluations show that VeriFact significantly enhances fact completeness and preserves complex facts with critical relational information, resulting in more accurate factuality evaluation. Benchmarking various open- and close-weight LLMs on FactRBench indicate that larger models within same model family improve precision and recall, but high precision does not always correlate with high recall, underscoring the importance of comprehensive factuality assessment.
Abstract:Continual Pre-Training (CPT) has become a popular and effective method to apply strong foundation models to specific downstream tasks. In this work, we explore the learning dynamics throughout the CPT process for large language models. We specifically focus on how general and downstream domain performance evolves at each training step, with domain performance measured via validation losses. We have observed that the CPT loss curve fundamentally characterizes the transition from one curve to another hidden curve, and could be described by decoupling the effects of distribution shift and learning rate annealing. We derive a CPT scaling law that combines the two factors, enabling the prediction of loss at any (continual) training steps and across learning rate schedules (LRS) in CPT. Our formulation presents a comprehensive understanding of several critical factors in CPT, including loss potential, peak learning rate, training steps, replay ratio, etc. Moreover, our approach can be adapted to customize training hyper-parameters to different CPT goals such as balancing general and domain-specific performance. Extensive experiments demonstrate that our scaling law holds across various CPT datasets and training hyper-parameters.
Abstract:A clustered adaptive intervention (cAI) is a pre-specified sequence of decision rules that guides practitioners on how best - and based on which measures - to tailor cluster-level intervention to improve outcomes at the level of individuals within the clusters. A clustered sequential multiple assignment randomized trial (cSMART) is a type of trial that is used to inform the empirical development of a cAI. The most common type of secondary aim in a cSMART focuses on assessing causal effect moderation by candidate tailoring variables. We introduce a clustered Q-learning framework with the M-out-of-N Cluster Bootstrap using data from a cSMART to evaluate whether a set of candidate tailoring variables may be useful in defining an optimal cAI. This approach could construct confidence intervals (CI) with near-nominal coverage to assess parameters indexing the causal effect moderation function. Specifically, it allows reliable inferences concerning the utility of candidate tailoring variables in constructing a cAI that maximizes a mean end-of-study outcome even when "non-regularity", a well-known challenge exists. Simulations demonstrate the numerical performance of the proposed method across varying non-regularity conditions and investigate the impact of varying number of clusters and intra-cluster correlation coefficient on CI coverage. Methods are applied on ADEPT dataset to inform the construction of a clinic-level cAI for improving evidence-based practice in treating mood disorders.