Alert button
Picture for Lu Wang

Lu Wang

Alert button

On-device Real-time Custom Hand Gesture Recognition

Sep 19, 2023
Esha Uboweja, David Tian, Qifei Wang, Yi-Chun Kuo, Joe Zou, Lu Wang, George Sung, Matthias Grundmann

Most existing hand gesture recognition (HGR) systems are limited to a predefined set of gestures. However, users and developers often want to recognize new, unseen gestures. This is challenging due to the vast diversity of all plausible hand shapes, e.g. it is impossible for developers to include all hand gestures in a predefined list. In this paper, we present a user-friendly framework that lets users easily customize and deploy their own gesture recognition pipeline. Our framework provides a pre-trained single-hand embedding model that can be fine-tuned for custom gesture recognition. Users can perform gestures in front of a webcam to collect a small amount of images per gesture. We also offer a low-code solution to train and deploy the custom gesture recognition model. This makes it easy for users with limited ML expertise to use our framework. We further provide a no-code web front-end for users without any ML expertise. This makes it even easier to build and test the end-to-end pipeline. The resulting custom HGR is then ready to be run on-device for real-time scenarios. This can be done by calling a simple function in our open-sourced model inference API, MediaPipe Tasks. This entire process only takes a few minutes.

* 5 pages, 6 figures; Accepted to ICCV Workshop on Computer Vision for Metaverse, Paris, France, 2023 
Viaarxiv icon

Latent Degradation Representation Constraint for Single Image Deraining

Sep 09, 2023
Yuhong He, Long Peng, Lu Wang, Jun Cheng

Figure 1 for Latent Degradation Representation Constraint for Single Image Deraining
Figure 2 for Latent Degradation Representation Constraint for Single Image Deraining
Figure 3 for Latent Degradation Representation Constraint for Single Image Deraining
Figure 4 for Latent Degradation Representation Constraint for Single Image Deraining

Since rain streaks show a variety of shapes and directions, learning the degradation representation is extremely challenging for single image deraining. Existing methods are mainly targeted at designing complicated modules to implicitly learn latent degradation representation from coupled rainy images. This way, it is hard to decouple the content-independent degradation representation due to the lack of explicit constraint, resulting in over- or under-enhancement problems. To tackle this issue, we propose a novel Latent Degradation Representation Constraint Network (LDRCNet) that consists of Direction-Aware Encoder (DAEncoder), UNet Deraining Network, and Multi-Scale Interaction Block (MSIBlock). Specifically, the DAEncoder is proposed to adaptively extract latent degradation representation by using the deformable convolutions to exploit the direction consistency of rain streaks. Next, a constraint loss is introduced to explicitly constraint the degradation representation learning during training. Last, we propose an MSIBlock to fuse with the learned degradation representation and decoder features of the deraining network for adaptive information interaction, which enables the deraining network to remove various complicated rainy patterns and reconstruct image details. Experimental results on synthetic and real datasets demonstrate that our method achieves new state-of-the-art performance.

Viaarxiv icon

Exploring Demonstration Ensembling for In-context Learning

Aug 21, 2023
Muhammad Khalifa, Lajanugen Logeswaran, Moontae Lee, Honglak Lee, Lu Wang

Figure 1 for Exploring Demonstration Ensembling for In-context Learning
Figure 2 for Exploring Demonstration Ensembling for In-context Learning
Figure 3 for Exploring Demonstration Ensembling for In-context Learning
Figure 4 for Exploring Demonstration Ensembling for In-context Learning

In-context learning (ICL) operates by showing language models (LMs) examples of input-output pairs for a given task, i.e., demonstrations. The standard approach for ICL is to prompt the LM with concatenated demonstrations followed by the test input. This approach suffers from some issues. First, concatenation offers almost no control over the contribution of each demo to the model prediction. This can be sub-optimal when some demonstrations are irrelevant to the test example. Second, due to the input length limit of some transformer models, it might be infeasible to fit many examples into the context, especially when dealing with long-input tasks. In this work, we explore Demonstration Ensembling (DENSE) as an alternative to simple concatenation. DENSE predicts outputs using subsets (i.e., buckets) of the demonstrations and then combines the output probabilities resulting from each subset to produce the final prediction. We study different ensembling methods using GPT-j and experiment on 12 language tasks. Our experiments show weighted max ensembling to outperform vanilla concatenation by as large as 2.4 average points. Code available at https://github.com/mukhal/icl-ensembling.

* Published at ME-FoMo workshop at ICLR 2023. Arxiv version includes evaluation on 5 more tasks 
Viaarxiv icon

Algorithm of Thoughts: Enhancing Exploration of Ideas in Large Language Models

Aug 20, 2023
Bilgehan Sel, Ahmad Al-Tawaha, Vanshaj Khattar, Lu Wang, Ruoxi Jia, Ming Jin

Current literature, aiming to surpass the "Chain-of-Thought" approach, often resorts to an external modus operandi involving halting, modifying, and then resuming the generation process to boost Large Language Models' (LLMs) reasoning capacities. This mode escalates the number of query requests, leading to increased costs, memory, and computational overheads. Addressing this, we propose the Algorithm of Thoughts -- a novel strategy that propels LLMs through algorithmic reasoning pathways, pioneering a new mode of in-context learning. By employing algorithmic examples, we exploit the innate recurrence dynamics of LLMs, expanding their idea exploration with merely one or a few queries. Our technique outperforms earlier single-query methods and stands on par with a recent multi-query strategy that employs an extensive tree search algorithm. Intriguingly, our results suggest that instructing an LLM using an algorithm can lead to performance surpassing that of the algorithm itself, hinting at LLM's inherent ability to weave its intuition into optimized searches. We probe into the underpinnings of our method's efficacy and its nuances in application.

Viaarxiv icon

Reinforcement Logic Rule Learning for Temporal Point Processes

Aug 11, 2023
Chao Yang, Lu Wang, Kun Gao, Shuang Li

Figure 1 for Reinforcement Logic Rule Learning for Temporal Point Processes
Figure 2 for Reinforcement Logic Rule Learning for Temporal Point Processes
Figure 3 for Reinforcement Logic Rule Learning for Temporal Point Processes
Figure 4 for Reinforcement Logic Rule Learning for Temporal Point Processes

We propose a framework that can incrementally expand the explanatory temporal logic rule set to explain the occurrence of temporal events. Leveraging the temporal point process modeling and learning framework, the rule content and weights will be gradually optimized until the likelihood of the observational event sequences is optimal. The proposed algorithm alternates between a master problem, where the current rule set weights are updated, and a subproblem, where a new rule is searched and included to best increase the likelihood. The formulated master problem is convex and relatively easy to solve using continuous optimization, whereas the subproblem requires searching the huge combinatorial rule predicate and relationship space. To tackle this challenge, we propose a neural search policy to learn to generate the new rule content as a sequence of actions. The policy parameters will be trained end-to-end using the reinforcement learning framework, where the reward signals can be efficiently queried by evaluating the subproblem objective. The trained policy can be used to generate new rules in a controllable way. We evaluate our methods on both synthetic and real healthcare datasets, obtaining promising results.

* 27 pages 
Viaarxiv icon

Robust Positive-Unlabeled Learning via Noise Negative Sample Self-correction

Aug 01, 2023
Zhangchi Zhu, Lu Wang, Pu Zhao, Chao Du, Wei Zhang, Hang Dong, Bo Qiao, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang

Figure 1 for Robust Positive-Unlabeled Learning via Noise Negative Sample Self-correction
Figure 2 for Robust Positive-Unlabeled Learning via Noise Negative Sample Self-correction
Figure 3 for Robust Positive-Unlabeled Learning via Noise Negative Sample Self-correction
Figure 4 for Robust Positive-Unlabeled Learning via Noise Negative Sample Self-correction

Learning from positive and unlabeled data is known as positive-unlabeled (PU) learning in literature and has attracted much attention in recent years. One common approach in PU learning is to sample a set of pseudo-negatives from the unlabeled data using ad-hoc thresholds so that conventional supervised methods can be applied with both positive and negative samples. Owing to the label uncertainty among the unlabeled data, errors of misclassifying unlabeled positive samples as negative samples inevitably appear and may even accumulate during the training processes. Those errors often lead to performance degradation and model instability. To mitigate the impact of label uncertainty and improve the robustness of learning with positive and unlabeled data, we propose a new robust PU learning method with a training strategy motivated by the nature of human learning: easy cases should be learned first. Similar intuition has been utilized in curriculum learning to only use easier cases in the early stage of training before introducing more complex cases. Specifically, we utilize a novel ``hardness'' measure to distinguish unlabeled samples with a high chance of being negative from unlabeled samples with large label noise. An iterative training strategy is then implemented to fine-tune the selection of negative samples during the training process in an iterative manner to include more ``easy'' samples in the early stage of training. Extensive experimental validations over a wide range of learning tasks show that this approach can effectively improve the accuracy and stability of learning with positive and unlabeled data. Our code is available at https://github.com/woriazzc/Robust-PU

* Accepted at KDD2023 
Viaarxiv icon

Spatio-Temporal Classification of Lung Ventilation Patterns using 3D EIT Images: A General Approach for Individualized Lung Function Evaluation

Jul 01, 2023
Shuzhe Chen, Li Li, Zhichao Lin, Ke Zhang, Ying Gong, Lu Wang, Xu Wu, Maokun Li, Yuanlin Song, Fan Yang, Shenheng Xu

The Pulmonary Function Test (PFT) is an widely utilized and rigorous classification test for lung function evaluation, serving as a comprehensive tool for lung diagnosis. Meanwhile, Electrical Impedance Tomography (EIT) is a rapidly advancing clinical technique that visualizes conductivity distribution induced by ventilation. EIT provides additional spatial and temporal information on lung ventilation beyond traditional PFT. However, relying solely on conventional isolated interpretations of PFT results and EIT images overlooks the continuous dynamic aspects of lung ventilation. This study aims to classify lung ventilation patterns by extracting spatial and temporal features from the 3D EIT image series. The study uses a Variational Autoencoder network with a MultiRes block to compress the spatial distribution in a 3D image into a one-dimensional vector. These vectors are then concatenated to create a feature map for the exhibition of temporal features. A simple convolutional neural network is used for classification. Data collected from 137 subjects were finally used for training. The model is validated by ten-fold and leave-one-out cross-validation first. The accuracy and sensitivity of normal ventilation mode are 0.95 and 1.00, and the f1-score is 0.94. Furthermore, we check the reliability and feasibility of the proposed pipeline by testing it on newly recruited nine subjects. Our results show that the pipeline correctly predicts the ventilation mode of 8 out of 9 subjects. The study demonstrates the potential of using image series for lung ventilation mode classification, providing a feasible method for patient prescreening and presenting an alternative form of PFT.

Viaarxiv icon

Diffusion Model Based Low-Light Image Enhancement for Space Satellite

Jun 25, 2023
Yiman Zhu, Lu Wang, Jingyi Yuan, Yu Guo

Figure 1 for Diffusion Model Based Low-Light Image Enhancement for Space Satellite
Figure 2 for Diffusion Model Based Low-Light Image Enhancement for Space Satellite
Figure 3 for Diffusion Model Based Low-Light Image Enhancement for Space Satellite
Figure 4 for Diffusion Model Based Low-Light Image Enhancement for Space Satellite

Space-based visible camera is an important sensor for space situation awareness during proximity operations. However, visible camera can be easily affected by the low illumination in the space environment. Recently, deep learning approaches have achieved remarkable success in image enhancement of natural images datasets, but seldom applied in space due to the data bottleneck. In this article, we propose a data-driven method for low-light image enhancement (LLIE) of spin targets in space environment based on diffusion model. Firstly, a dataset collection scheme is devised. To reduce the domain gap and improve the diversity and quality of the dataset, we collect the data with the camera on a ground-test system imitating the low lighting conditions and relative attitude change of satellite in space. The satellite motion is controlled by a 6-DoF robot. To generate different poses, a advanced sampling method is combined with collision detection in physical simulation. The entire process is automated. Based on our dataset, a novel diffusion model is proposed. The diffusion and denoising process are directly conducted on the grayscale channel to save computational resources. To take advantage of the inner information of RGB channels, we rescale the RGB feature maps and insert them into the downsampling layers to help feature extraction. The enhanced results with our method have been verified to be better in image light enhancement and competitive in image quality compared with previous methods. To the best of our knowledge, this is the first work of LLIE using diffusion model.

Viaarxiv icon

Skill Disentanglement for Imitation Learning from Suboptimal Demonstrations

Jun 13, 2023
Tianxiang Zhao, Wenchao Yu, Suhang Wang, Lu Wang, Xiang Zhang, Yuncong Chen, Yanchi Liu, Wei Cheng, Haifeng Chen

Figure 1 for Skill Disentanglement for Imitation Learning from Suboptimal Demonstrations
Figure 2 for Skill Disentanglement for Imitation Learning from Suboptimal Demonstrations
Figure 3 for Skill Disentanglement for Imitation Learning from Suboptimal Demonstrations
Figure 4 for Skill Disentanglement for Imitation Learning from Suboptimal Demonstrations

Imitation learning has achieved great success in many sequential decision-making tasks, in which a neural agent is learned by imitating collected human demonstrations. However, existing algorithms typically require a large number of high-quality demonstrations that are difficult and expensive to collect. Usually, a trade-off needs to be made between demonstration quality and quantity in practice. Targeting this problem, in this work we consider the imitation of sub-optimal demonstrations, with both a small clean demonstration set and a large noisy set. Some pioneering works have been proposed, but they suffer from many limitations, e.g., assuming a demonstration to be of the same optimality throughout time steps and failing to provide any interpretation w.r.t knowledge learned from the noisy set. Addressing these problems, we propose {\method} by evaluating and imitating at the sub-demonstration level, encoding action primitives of varying quality into different skills. Concretely, {\method} consists of a high-level controller to discover skills and a skill-conditioned module to capture action-taking policies, and is trained following a two-phase pipeline by first discovering skills with all demonstrations and then adapting the controller to only the clean set. A mutual-information-based regularization and a dynamic sub-demonstration optimality estimator are designed to promote disentanglement in the skill space. Extensive experiments are conducted over two gym environments and a real-world healthcare dataset to demonstrate the superiority of {\method} in learning from sub-optimal demonstrations and its improved interpretability by examining learned skills.

* Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '23), August 6--10, 2023, Long Beach, CA, USA  
Viaarxiv icon