Abstract:Large Reasoning Models (LRMs) like DeepSeek-R1 and OpenAI-o1 have demonstrated remarkable reasoning capabilities, raising important questions about their biases in LLM-as-a-judge settings. We present a comprehensive benchmark comparing judging biases between LLMs and LRMs across both subjective preference-alignment datasets and objective fact-based datasets. Through investigation of bandwagon, authority, position, and distraction biases, we uncover four key findings: (1) despite their advanced reasoning capabilities, LRMs remain susceptible to the above biases; (2) LRMs demonstrate better robustness than LLMs specifically on fact-related datasets; (3) LRMs exhibit notable position bias, preferring options in later positions; and (4) we identify a novel "superficial reflection bias" where phrases mimicking reasoning (e.g., "wait, let me think...") significantly influence model judgments. To address these biases, we design and evaluate three mitigation strategies: specialized system prompts that reduce judging biases by up to 19\% in preference alignment datasets and 14\% in fact-related datasets, in-context learning that provides up to 27\% improvement on preference tasks but shows inconsistent results on factual tasks, and a self-reflection mechanism that reduces biases by up to 10\% in preference datasets and 16\% in fact-related datasets, with self-reflection proving particularly effective for LRMs. Our work provides crucial insights for developing more reliable LLM-as-a-Judge frameworks, especially as LRMs become increasingly deployed as automated judges.
Abstract:Decentralized collaborative learning under data heterogeneity and privacy constraints has rapidly advanced. However, existing solutions like federated learning, ensembles, and transfer learning, often fail to adequately serve the unique needs of clients, especially when local data representation is limited. To address this issue, we propose a novel framework called Query-based Knowledge Transfer (QKT) that enables tailored knowledge acquisition to fulfill specific client needs without direct data exchange. QKT employs a data-free masking strategy to facilitate communication-efficient query-focused knowledge transfer while refining task-specific parameters to mitigate knowledge interference and forgetting. Our experiments, conducted on both standard and clinical benchmarks, show that QKT significantly outperforms existing collaborative learning methods by an average of 20.91\% points in single-class query settings and an average of 14.32\% points in multi-class query scenarios. Further analysis and ablation studies reveal that QKT effectively balances the learning of new and existing knowledge, showing strong potential for its application in decentralized learning.
Abstract:Large Language Models (LLMs) have significantly advanced the fact-checking studies. However, existing automated fact-checking evaluation methods rely on static datasets and classification metrics, which fail to automatically evaluate the justification production and uncover the nuanced limitations of LLMs in fact-checking. In this work, we introduce FACT-AUDIT, an agent-driven framework that adaptively and dynamically assesses LLMs' fact-checking capabilities. Leveraging importance sampling principles and multi-agent collaboration, FACT-AUDIT generates adaptive and scalable datasets, performs iterative model-centric evaluations, and updates assessments based on model-specific responses. By incorporating justification production alongside verdict prediction, this framework provides a comprehensive and evolving audit of LLMs' factual reasoning capabilities, to investigate their trustworthiness. Extensive experiments demonstrate that FACT-AUDIT effectively differentiates among state-of-the-art LLMs, providing valuable insights into model strengths and limitations in model-centric fact-checking analysis.
Abstract:This study introduces two novel benchmarks, SeaExam and SeaBench, designed to evaluate the capabilities of Large Language Models (LLMs) in Southeast Asian (SEA) application scenarios. Unlike existing multilingual datasets primarily derived from English translations, these benchmarks are constructed based on real-world scenarios from SEA regions. SeaExam draws from regional educational exams to form a comprehensive dataset that encompasses subjects such as local history and literature. In contrast, SeaBench is crafted around multi-turn, open-ended tasks that reflect daily interactions within SEA communities. Our evaluations demonstrate that SeaExam and SeaBench more effectively discern LLM performance on SEA language tasks compared to their translated benchmarks. This highlights the importance of using real-world queries to assess the multilingual capabilities of LLMs.
Abstract:In recent research, adversarial attacks on person detectors using patches or static 3D model-based texture modifications have struggled with low success rates due to the flexible nature of human movement. Modeling the 3D deformations caused by various actions has been a major challenge. Fortunately, advancements in Neural Radiance Fields (NeRF) for dynamic human modeling offer new possibilities. In this paper, we introduce UV-Attack, a groundbreaking approach that achieves high success rates even with extensive and unseen human actions. We address the challenge above by leveraging dynamic-NeRF-based UV mapping. UV-Attack can generate human images across diverse actions and viewpoints, and even create novel actions by sampling from the SMPL parameter space. While dynamic NeRF models are capable of modeling human bodies, modifying clothing textures is challenging because they are embedded in neural network parameters. To tackle this, UV-Attack generates UV maps instead of RGB images and modifies the texture stacks. This approach enables real-time texture edits and makes the attack more practical. We also propose a novel Expectation over Pose Transformation loss (EoPT) to improve the evasion success rate on unseen poses and views. Our experiments show that UV-Attack achieves a 92.75% attack success rate against the FastRCNN model across varied poses in dynamic video settings, significantly outperforming the state-of-the-art AdvCamou attack, which only had a 28.50% ASR. Moreover, we achieve 49.5% ASR on the latest YOLOv8 detector in black-box settings. This work highlights the potential of dynamic NeRF-based UV mapping for creating more effective adversarial attacks on person detectors, addressing key challenges in modeling human movement and texture modification.
Abstract:With the rise and widespread use of Large Language Models (LLMs), ensuring their safety is crucial to prevent harm to humans and promote ethical behaviors. However, directly assessing value valence (i.e., support or oppose) by leveraging large-scale data training is untrustworthy and inexplainable. We assume that emulating humans to rely on social norms to make moral decisions can help LLMs understand and predict moral judgment. However, capturing human values remains a challenge, as multiple related norms might conflict in specific contexts. Consider norms that are upheld by the majority and promote the well-being of society are more likely to be accepted and widely adopted (e.g., "don't cheat,"). Therefore, it is essential for LLM to identify the appropriate norms for a given scenario before making moral decisions. To this end, we introduce a novel moral judgment approach called \textit{ClarityEthic} that leverages LLMs' reasoning ability and contrastive learning to uncover relevant social norms for human actions from different perspectives and select the most reliable one to enhance judgment accuracy. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in moral judgment tasks. Moreover, human evaluations confirm that the generated social norms provide plausible explanations that support the judgments. This suggests that modeling human moral judgment with the emulating humans moral strategy is promising for improving the ethical behaviors of LLMs.
Abstract:Although large language models (LLMs) store vast amount of knowledge in their parameters, they still have limitations in the memorization and utilization of certain knowledge, leading to undesired behaviors such as generating untruthful and inaccurate responses. This highlights the critical need to understand the knowledge boundary of LLMs, a concept that remains inadequately defined in existing research. In this survey, we propose a comprehensive definition of the LLM knowledge boundary and introduce a formalized taxonomy categorizing knowledge into four distinct types. Using this foundation, we systematically review the field through three key lenses: the motivation for studying LLM knowledge boundaries, methods for identifying these boundaries, and strategies for mitigating the challenges they present. Finally, we discuss open challenges and potential research directions in this area. We aim for this survey to offer the community a comprehensive overview, facilitate access to key issues, and inspire further advancements in LLM knowledge research.
Abstract:The rapid increase of space assets represented by small satellites in low Earth orbit can enable ubiquitous digital services for everyone. However, due to the dynamic space environment, numerous space objects, complex atmospheric conditions, and unexpected events can easily introduce adverse conditions affecting space safety, operations, and sustainability of the outer space environment. This challenge calls for responsive, effective satellite object detection (SOD) solutions that allow a small satellite to assess and respond to collision risks, with the consideration of constrained resources on a small satellite platform. This paper discusses the SOD tasks and onboard deep learning (DL) approach to the tasks. Two new DL models are proposed, called GELAN-ViT and GELAN-RepViT, which incorporate vision transformer (ViT) into the Generalized Efficient Layer Aggregation Network (GELAN) architecture and address limitations by separating the convolutional neural network and ViT paths. These models outperform the state-of-the-art YOLOv9-t in terms of mean average precision (mAP) and computational costs. On the SOD dataset, our proposed models can achieve around 95% mAP50 with giga-floating point operations (GFLOPs) reduced by over 5.0. On the VOC 2012 dataset, they can achieve $\geq$ 60.7% mAP50 with GFLOPs reduced by over 5.2.
Abstract:Fine-tuning large language models (LLMs) on human preferences, typically through reinforcement learning from human feedback (RLHF), has proven successful in enhancing their capabilities. However, ensuring the safety of LLMs during the fine-tuning remains a critical concern, and mitigating the potential conflicts in safety and helpfulness is costly in RLHF. To address this issue, we propose a supervised learning framework called Bi-Factorial Preference Optimization (BFPO), which re-parameterizes a joint RLHF objective of both safety and helpfulness into a single supervised learning objective. In the supervised optimization, a labeling function is used to capture global preferences ranking to balance both safety and helpfulness. To evaluate BFPO, we develop a benchmark including comprehensive discriminative and generative tasks for helpfulness and harmlessness. The results indicate that our method significantly outperforms existing approaches in both safety and helpfulness. Moreover, BFPO eliminates the need for human prompting and annotation in LLM fine-tuning while achieving the same level of safety as methods that heavily rely on human labor, with less than 10% of the computational resources. The training recipes and models will be released.
Abstract:Large Language Models (LLMs) have shown remarkable abilities across various tasks, yet their development has predominantly centered on high-resource languages like English and Chinese, leaving low-resource languages underserved. To address this disparity, we present SeaLLMs 3, the latest iteration of the SeaLLMs model family, tailored for Southeast Asian languages. This region, characterized by its rich linguistic diversity, has lacked adequate language technology support. SeaLLMs 3 aims to bridge this gap by covering a comprehensive range of languages spoken in this region, including English, Chinese, Indonesian, Vietnamese, Thai, Tagalog, Malay, Burmese, Khmer, Lao, Tamil, and Javanese. Leveraging efficient language enhancement techniques and a specially constructed instruction tuning dataset, SeaLLMs 3 significantly reduces training costs while maintaining high performance and versatility. Our model excels in tasks such as world knowledge, mathematical reasoning, translation, and instruction following, achieving state-of-the-art performance among similarly sized models. Additionally, we prioritized safety and reliability by addressing both general and culture-specific considerations and incorporated mechanisms to reduce hallucinations. This work underscores the importance of inclusive AI, showing that advanced LLM capabilities can benefit underserved linguistic and cultural communities.