Nanyang Technological University
Abstract:The demand of customized large language models (LLMs) has led to commercial LLMs offering black-box fine-tuning APIs, yet this convenience introduces a critical security loophole: attackers could jailbreak the LLMs by fine-tuning them with malicious data. Though this security issue has recently been exposed, the feasibility of such attacks is questionable as malicious training dataset is believed to be detectable by moderation models such as Llama-Guard-3. In this paper, we propose TrojanPraise, a novel finetuning-based attack exploiting benign and thus filter-approved data. Basically, TrojanPraise fine-tunes the model to associate a crafted word (e.g., "bruaf") with harmless connotations, then uses this word to praise harmful concepts, subtly shifting the LLM from refusal to compliance. To explain the attack, we decouple the LLM's internal representation of a query into two dimensions of knowledge and attitude. We demonstrate that successful jailbreak requires shifting the attitude while avoiding knowledge shift, a distortion in the model's understanding of the concept. To validate this attack, we conduct experiments on five opensource LLMs and two commercial LLMs under strict black-box settings. Results show that TrojanPraise achieves a maximum attack success rate of 95.88% while evading moderation.
Abstract:The ambiguity of human emotions poses several challenges for machine learning models, as they often overlap and lack clear delineating boundaries. Contrastive language-audio pretraining (CLAP) has emerged as a key technique for generalisable emotion recognition. However, as conventional CLAP enforces a strict one-to-one alignment between paired audio-text samples, it overlooks intra-modal similarity and treats all non-matching pairs as equally negative. This conflicts with the fuzzy boundaries between different emotions. To address this limitation, we propose SmoothCLAP, which introduces softened targets derived from intra-modal similarity and paralinguistic features. By combining these softened targets with conventional contrastive supervision, SmoothCLAP learns embeddings that respect graded emotional relationships, while retaining the same inference pipeline as CLAP. Experiments on eight affective computing tasks across English and German demonstrate that SmoothCLAP is consistently achieving superior performance. Our results highlight that leveraging soft supervision is a promising strategy for building emotion-aware audio-text models.
Abstract:The environmental and target-related information inherently carried in wireless signals, such as channel state information (CSI), has brought increasing attention to integrated sensing and communication (ISAC). However, it also raises pressing concerns about privacy leakage through eavesdropping. While existing efforts have attempted to mitigate this issue, they either fail to account for the needs of legitimate communication and sensing users or rely on hardware with high complexity and cost. To overcome these limitations, we propose PrivISAC, a plug-and-play, low-cost solution that leverages RIS to protect user privacy while preserving ISAC performance. At the core of PrivISAC is a novel strategy in which each RIS row is assigned two distinct beamforming vectors, from which we deliberately construct a limited set of RIS configurations. During operation, exactly one configuration is randomly activated at each time slot to introduce additional perturbations, effectively masking sensitive sensing information from unauthorized eavesdroppers. To jointly ensure privacy protection and communication performance, we design the two vectors such that their responses remain nearly identical in the communication direction, thereby preserving stable, high-throughput transmission, while exhibiting pronounced differences in the sensing direction, which introduces sufficient perturbations to thwart eavesdroppers. Additionally, to enable legitimate sensing under such randomized configurations, we introduce a time-domain masking and demasking method that allows the authorized receiver to associate each CSI sample with its underlying configuration and eliminate configuration-induced discrepancies, thereby recovering valid CSI. We implement PrivISAC on commodity wireless devices and experiment results show that PrivISAC provides strong privacy protection while preserving high-quality legitimate ISAC.




Abstract:Deep joint source-channel coding (DeepJSCC) has emerged as a promising paradigm for efficient and robust information transmission. However, its intrinsic characteristics also pose new security challenges, notably an increased vulnerability to eavesdropping attacks. Existing studies on defending against eavesdropping attacks in DeepJSCC, while demonstrating certain effectiveness, often incur considerable computational overhead or introduce performance trade-offs that may adversely affect legitimate users. In this paper, we present DeepGuard, to the best of our knowledge, the first physical-layer defense framework for DeepJSCC against eavesdropping attacks, validated through over-the-air experiments using software-defined radios (SDRs). Considering that existing eavesdropping attacks against DeepJSCC are limited to simulation under ideal channels, we take a step further by identifying and implementing four representative types of attacks under various configurations in orthogonal frequency-division multiplexing systems. These attacks are evaluated over-the-air under diverse scenarios, allowing us to comprehensively characterize the real-world threat landscape. To mitigate these threats, DeepGuard introduces a novel preamble perturbation mechanism that modifies the preamble shared only between legitimate transceivers. To realize it, we first conduct a theoretical analysis of the perturbation's impact on the signals intercepted by the eavesdropper. Building upon this, we develop an end-to-end perturbation optimization algorithm that significantly degrades eavesdropping performance while preserving reliable communication for legitimate users. We prototype DeepGuard using SDRs and conduct extensive over-the-air experiments in practical scenarios. Extensive experiments demonstrate that DeepGuard effectively mitigates eavesdropping threats.
Abstract:Though deep neural models adopted to realize the perception of autonomous driving have proven vulnerable to adversarial examples, known attacks often leverage 2D patches and target mostly monocular perception. Therefore, the effectiveness of Physical Adversarial Examples (PAEs) on stereo-based binocular depth estimation remains largely unexplored. To this end, we propose the first texture-enabled physical adversarial attack against stereo matching models in the context of autonomous driving. Our method employs a 3D PAE with global camouflage texture rather than a local 2D patch-based one, ensuring both visual consistency and attack effectiveness across different viewpoints of stereo cameras. To cope with the disparity effect of these cameras, we also propose a new 3D stereo matching rendering module that allows the PAE to be aligned with real-world positions and headings in binocular vision. We further propose a novel merging attack that seamlessly blends the target into the environment through fine-grained PAE optimization. It has significantly enhanced stealth and lethality upon existing hiding attacks that fail to get seamlessly merged into the background. Extensive evaluations show that our PAEs can successfully fool the stereo models into producing erroneous depth information.




Abstract:Large vision-language models (LVLMs) enable autonomous mobile agents to operate smartphone user interfaces, yet vulnerabilities to UI-level attacks remain critically understudied. Existing research often depends on conspicuous UI overlays, elevated permissions, or impractical threat models, limiting stealth and real-world applicability. In this paper, we present a practical and stealthy one-shot jailbreak attack that leverages in-app prompt injections: malicious applications embed short prompts in UI text that remain inert during human interaction but are revealed when an agent drives the UI via ADB (Android Debug Bridge). Our framework comprises three crucial components: (1) low-privilege perception-chain targeting, which injects payloads into malicious apps as the agent's visual inputs; (2) stealthy user-invisible activation, a touch-based trigger that discriminates agent from human touches using physical touch attributes and exposes the payload only during agent operation; and (3) one-shot prompt efficacy, a heuristic-guided, character-level iterative-deepening search algorithm (HG-IDA*) that performs one-shot, keyword-level detoxification to evade on-device safety filters. We evaluate across multiple LVLM backends, including closed-source services and representative open-source models within three Android applications, and we observe high planning and execution hijack rates in single-shot scenarios (e.g., GPT-4o: 82.5% planning / 75.0% execution). These findings expose a fundamental security vulnerability in current mobile agents with immediate implications for autonomous smartphone operation.




Abstract:Vision-Language Model (VLM) driving agents promise explainable end-to-end autonomy by first producing natural-language reasoning and then predicting trajectory planning. However, whether planning is causally driven by this reasoning remains a critical but unverified assumption. To investigate this, we build DriveMind, a large-scale driving Visual Question Answering (VQA) corpus with plan-aligned Chain-of-Thought (CoT), automatically generated from nuPlan. Our data generation process converts sensors and annotations into structured inputs and, crucially, separates priors from to-be-reasoned signals, enabling clean information ablations. Using DriveMind, we train representative VLM agents with Supervised Fine-Tuning (SFT) and Group Relative Policy Optimization (GRPO) and evaluate them with nuPlan's metrics. Our results, unfortunately, indicate a consistent causal disconnect in reasoning-planning: removing ego/navigation priors causes large drops in planning scores, whereas removing CoT produces only minor changes. Attention analysis further shows that planning primarily focuses on priors rather than the CoT. Based on this evidence, we propose the Reasoning-Planning Decoupling Hypothesis, positing that the training-yielded reasoning is an ancillary byproduct rather than a causal mediator. To enable efficient diagnosis, we also introduce a novel, training-free probe that measures an agent's reliance on priors by evaluating its planning robustness against minor input perturbations. In summary, we provide the community with a new dataset and a diagnostic tool to evaluate the causal fidelity of future models.




Abstract:The main challenge of continual learning is \textit{catastrophic forgetting}. Because of processing data in one pass, online continual learning (OCL) is one of the most difficult continual learning scenarios. To address catastrophic forgetting in OCL, some existing studies use a rehearsal buffer to store samples and replay them in the later learning process, other studies do not store samples but assume a sequence of learning tasks so that the task identities can be explored. However, storing samples may raise data security or privacy concerns and it is not always possible to identify the boundaries between learning tasks in one pass of data processing. It motivates us to investigate rehearsal-free and task-free OCL (F2OCL). By integrating prompt learning with an NCM classifier, this study has effectively tackled catastrophic forgetting without storing samples and without usage of task boundaries or identities. The extensive experimental results on two benchmarks have demonstrated the effectiveness of the proposed method.
Abstract:Diffusion Large Language Models (dLLMs) have recently emerged as a competitive non-autoregressive paradigm due to their unique training and inference approach. However, there is currently a lack of safety study on this novel architecture. In this paper, we present the first analysis of dLLMs' safety performance and propose a novel safety alignment method tailored to their unique generation characteristics. Specifically, we identify a critical asymmetry between the defender and attacker in terms of security. For the defender, we reveal that the middle tokens of the response, rather than the initial ones, are more critical to the overall safety of dLLM outputs; this seems to suggest that aligning middle tokens can be more beneficial to the defender. The attacker, on the contrary, may have limited power to manipulate middle tokens, as we find dLLMs have a strong tendency towards a sequential generation order in practice, forcing the attack to meet this distribution and diverting it from influencing the critical middle tokens. Building on this asymmetry, we introduce Middle-tOken Safety Alignment (MOSA), a novel method that directly aligns the model's middle generation with safe refusals exploiting reinforcement learning. We implement MOSA and compare its security performance against eight attack methods on two benchmarks. We also test the utility of MOSA-aligned dLLM on coding, math, and general reasoning. The results strongly prove the superiority of MOSA.
Abstract:Loss of plasticity is a phenomenon in which a neural network loses its ability to learn when trained for an extended time on non-stationary data. It is a crucial problem to overcome when designing systems that learn continually. An effective technique for preventing loss of plasticity is reinitializing parts of the network. In this paper, we compare two different reinitialization schemes: reinitializing units vs reinitializing weights. We propose a new algorithm, which we name \textit{selective weight reinitialization}, for reinitializing the least useful weights in a network. We compare our algorithm to continual backpropagation and ReDo, two previously proposed algorithms that reinitialize units in the network. Through our experiments in continual supervised learning problems, we identify two settings when reinitializing weights is more effective at maintaining plasticity than reinitializing units: (1) when the network has a small number of units and (2) when the network includes layer normalization. Conversely, reinitializing weights and units are equally effective at maintaining plasticity when the network is of sufficient size and does not include layer normalization. We found that reinitializing weights maintains plasticity in a wider variety of settings than reinitializing units.