Abstract:Learning to adapt pretrained language models to unlabeled, out-of-distribution data is a critical challenge, as models often falter on structurally novel reasoning tasks even while excelling within their training distribution. We introduce a new framework called VDS-TTT - Verifier-Driven Sample Selection for Test-Time Training to efficiently address this. We use a learned verifier to score a pool of generated responses and select only from high ranking pseudo-labeled examples for fine-tuned adaptation. Specifically, for each input query our LLM generates N candidate answers; the verifier assigns a reliability score to each, and the response with the highest confidence and above a fixed threshold is paired with its query for test-time training. We fine-tune only low-rank LoRA adapter parameters, ensuring adaptation efficiency and fast convergence. Our proposed self-supervised framework is the first to synthesize verifier driven test-time training data for continuous self-improvement of the model. Experiments across three diverse benchmarks and three state-of-the-art LLMs demonstrate that VDS-TTT yields up to a 32.29% relative improvement over the base model and a 6.66% gain compared to verifier-based methods without test-time training, highlighting its effectiveness and efficiency for on-the-fly large language model adaptation.
Abstract:Attention and State-Space Models (SSMs) when combined in a hybrid network in sequence or in parallel provide complementary strengths. In a hybrid sequential pipeline they alternate between applying a transformer to the input and then feeding its output into a SSM. This results in idle periods in the individual components increasing end-to-end latency and lowering throughput caps. In the parallel hybrid architecture, the transformer operates independently in parallel with the SSM, and these pairs are cascaded, with output from one pair forming the input to the next. Two issues are (i) creating an expressive knowledge representation with the inherently divergent outputs from these separate branches, and (ii) load balancing the computation between these parallel branches, while maintaining representation fidelity. In this work we present FlowHN, a novel parallel hybrid network architecture that accommodates various strategies for load balancing, achieved through appropriate distribution of input tokens between the two branches. Two innovative differentiating factors in FlowHN include a FLOP aware dynamic token split between the attention and SSM branches yielding efficient balance in compute load, and secondly, a method to fuse the highly divergent outputs from individual branches for enhancing representation expressivity. Together they enable much better token processing speeds, avoid bottlenecks, and at the same time yield significantly improved accuracy as compared to other competing works. We conduct comprehensive experiments on autoregressive language modeling for models with 135M, 350M, and 1B parameters. FlowHN outperforms sequential hybrid models and its parallel counterpart, achieving up to 4* higher Tokens per Second (TPS) and 2* better Model FLOPs Utilization (MFU).
Abstract:Knowledge-Based Visual Question Answering (KB-VQA) methods focus on tasks that demand reasoning with information extending beyond the explicit content depicted in the image. Early methods relied on explicit knowledge bases to provide this auxiliary information. Recent approaches leverage Large Language Models (LLMs) as implicit knowledge sources. While KB-VQA methods have demonstrated promising results, their potential remains constrained as the auxiliary text provided may not be relevant to the question context, and may also include irrelevant information that could misguide the answer predictor. We introduce a novel four-stage framework called Grounding Caption-Guided Knowledge-Based Visual Question Answering (GC-KBVQA), which enables LLMs to effectively perform zero-shot VQA tasks without the need for end-to-end multimodal training. Innovations include grounding question-aware caption generation to move beyond generic descriptions and have compact, yet detailed and context-rich information. This is combined with knowledge from external sources to create highly informative prompts for the LLM. GC-KBVQA can address a variety of VQA tasks, and does not require task-specific fine-tuning, thus reducing both costs and deployment complexity by leveraging general-purpose, pre-trained LLMs. Comparison with competing KB-VQA methods shows significantly improved performance. Our code will be made public.