Alert button
Picture for Qing Li

Qing Li

Alert button

Recognizing Conditional Causal Relationships about Emotions and Their Corresponding Conditions

Nov 28, 2023
Xinhong Chen, Zongxi Li, Yaowei Wang, Haoran Xie, Jianping Wang, Qing Li

The study of causal relationships between emotions and causes in texts has recently received much attention. Most works focus on extracting causally related clauses from documents. However, none of these works has considered that the causal relationships among the extracted emotion and cause clauses can only be valid under some specific context clauses. To highlight the context in such special causal relationships, we propose a new task to determine whether or not an input pair of emotion and cause has a valid causal relationship under different contexts and extract the specific context clauses that participate in the causal relationship. Since the task is new for which no existing dataset is available, we conduct manual annotation on a benchmark dataset to obtain the labels for our tasks and the annotations of each context clause's type that can also be used in some other applications. We adopt negative sampling to construct the final dataset to balance the number of documents with and without causal relationships. Based on the constructed dataset, we propose an end-to-end multi-task framework, where we design two novel and general modules to handle the two goals of our task. Specifically, we propose a context masking module to extract the context clauses participating in the causal relationships. We propose a prediction aggregation module to fine-tune the prediction results according to whether the input emotion and causes depend on specific context clauses. Results of extensive comparative experiments and ablation studies demonstrate the effectiveness and generality of our proposed framework.

Viaarxiv icon

Exploring Causal Learning through Graph Neural Networks: An In-depth Review

Nov 25, 2023
Simi Job, Xiaohui Tao, Taotao Cai, Haoran Xie, Lin Li, Jianming Yong, Qing Li

In machine learning, exploring data correlations to predict outcomes is a fundamental task. Recognizing causal relationships embedded within data is pivotal for a comprehensive understanding of system dynamics, the significance of which is paramount in data-driven decision-making processes. Beyond traditional methods, there has been a surge in the use of graph neural networks (GNNs) for causal learning, given their capabilities as universal data approximators. Thus, a thorough review of the advancements in causal learning using GNNs is both relevant and timely. To structure this review, we introduce a novel taxonomy that encompasses various state-of-the-art GNN methods employed in studying causality. GNNs are further categorized based on their applications in the causality domain. We further provide an exhaustive compilation of datasets integral to causal learning with GNNs to serve as a resource for practical study. This review also touches upon the application of causal learning across diverse sectors. We conclude the review with insights into potential challenges and promising avenues for future exploration in this rapidly evolving field of machine learning.

Viaarxiv icon

Untargeted Black-box Attacks for Social Recommendations

Nov 19, 2023
Wenqi Fan, Shijie Wang, Xiao-yong Wei, Xiaowei Mei, Qing Li

The rise of online social networks has facilitated the evolution of social recommender systems, which incorporate social relations to enhance users' decision-making process. With the great success of Graph Neural Networks in learning node representations, GNN-based social recommendations have been widely studied to model user-item interactions and user-user social relations simultaneously. Despite their great successes, recent studies have shown that these advanced recommender systems are highly vulnerable to adversarial attacks, in which attackers can inject well-designed fake user profiles to disrupt recommendation performances. While most existing studies mainly focus on targeted attacks to promote target items on vanilla recommender systems, untargeted attacks to degrade the overall prediction performance are less explored on social recommendations under a black-box scenario. To perform untargeted attacks on social recommender systems, attackers can construct malicious social relationships for fake users to enhance the attack performance. However, the coordination of social relations and item profiles is challenging for attacking black-box social recommendations. To address this limitation, we first conduct several preliminary studies to demonstrate the effectiveness of cross-community connections and cold-start items in degrading recommendations performance. Specifically, we propose a novel framework Multiattack based on multi-agent reinforcement learning to coordinate the generation of cold-start item profiles and cross-community social relations for conducting untargeted attacks on black-box social recommendations. Comprehensive experiments on various real-world datasets demonstrate the effectiveness of our proposed attacking framework under the black-box setting.

* Preprint. Under review 
Viaarxiv icon

An Embodied Generalist Agent in 3D World

Nov 18, 2023
Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puhao Li, Yan Wang, Qing Li, Song-Chun Zhu, Baoxiong Jia, Siyuan Huang

Leveraging massive knowledge and learning schemes from large language models (LLMs), recent machine learning models show notable successes in building generalist agents that exhibit the capability of general-purpose task solving in diverse domains, including natural language processing, computer vision, and robotics. However, a significant challenge remains as these models exhibit limited ability in understanding and interacting with the 3D world. We argue this limitation significantly hinders the current models from performing real-world tasks and further achieving general intelligence. To this end, we introduce an embodied multi-modal and multi-task generalist agent that excels in perceiving, grounding, reasoning, planning, and acting in the 3D world. Our proposed agent, referred to as LEO, is trained with shared LLM-based model architectures, objectives, and weights in two stages: (i) 3D vision-language alignment and (ii) 3D vision-language-action instruction tuning. To facilitate the training, we meticulously curate and generate an extensive dataset comprising object-level and scene-level multi-modal tasks with exceeding scale and complexity, necessitating a deep understanding of and interaction with the 3D world. Through rigorous experiments, we demonstrate LEO's remarkable proficiency across a wide spectrum of tasks, including 3D captioning, question answering, embodied reasoning, embodied navigation, and robotic manipulation. Our ablation results further provide valuable insights for the development of future embodied generalist agents.

* The first four authors contribute equally. Project page: 
Viaarxiv icon

NeuralGF: Unsupervised Point Normal Estimation by Learning Neural Gradient Function

Nov 01, 2023
Qing Li, Huifang Feng, Kanle Shi, Yue Gao, Yi Fang, Yu-Shen Liu, Zhizhong Han

Normal estimation for 3D point clouds is a fundamental task in 3D geometry processing. The state-of-the-art methods rely on priors of fitting local surfaces learned from normal supervision. However, normal supervision in benchmarks comes from synthetic shapes and is usually not available from real scans, thereby limiting the learned priors of these methods. In addition, normal orientation consistency across shapes remains difficult to achieve without a separate post-processing procedure. To resolve these issues, we propose a novel method for estimating oriented normals directly from point clouds without using ground truth normals as supervision. We achieve this by introducing a new paradigm for learning neural gradient functions, which encourages the neural network to fit the input point clouds and yield unit-norm gradients at the points. Specifically, we introduce loss functions to facilitate query points to iteratively reach the moving targets and aggregate onto the approximated surface, thereby learning a global surface representation of the data. Meanwhile, we incorporate gradients into the surface approximation to measure the minimum signed deviation of queries, resulting in a consistent gradient field associated with the surface. These techniques lead to our deep unsupervised oriented normal estimator that is robust to noise, outliers and density variations. Our excellent results on widely used benchmarks demonstrate that our method can learn more accurate normals for both unoriented and oriented normal estimation tasks than the latest methods. The source code and pre-trained model are publicly available at

* Accepted by NeurIPS 2023 
Viaarxiv icon

Embedding in Recommender Systems: A Survey

Oct 28, 2023
Xiangyu Zhao, Maolin Wang, Xinjian Zhao, Jiansheng Li, Shucheng Zhou, Dawei Yin, Qing Li, Jiliang Tang, Ruocheng Guo

Figure 1 for Embedding in Recommender Systems: A Survey
Figure 2 for Embedding in Recommender Systems: A Survey
Figure 3 for Embedding in Recommender Systems: A Survey
Figure 4 for Embedding in Recommender Systems: A Survey

Recommender systems have become an essential component of many online platforms, providing personalized recommendations to users. A crucial aspect is embedding techniques that coverts the high-dimensional discrete features, such as user and item IDs, into low-dimensional continuous vectors and can enhance the recommendation performance. Applying embedding techniques captures complex entity relationships and has spurred substantial research. In this survey, we provide an overview of the recent literature on embedding techniques in recommender systems. This survey covers embedding methods like collaborative filtering, self-supervised learning, and graph-based techniques. Collaborative filtering generates embeddings capturing user-item preferences, excelling in sparse data. Self-supervised methods leverage contrastive or generative learning for various tasks. Graph-based techniques like node2vec exploit complex relationships in network-rich environments. Addressing the scalability challenges inherent to embedding methods, our survey delves into innovative directions within the field of recommendation systems. These directions aim to enhance performance and reduce computational complexity, paving the way for improved recommender systems. Among these innovative approaches, we will introduce Auto Machine Learning (AutoML), hash techniques, and quantization techniques in this survey. We discuss various architectures and techniques and highlight the challenges and future directions in these aspects. This survey aims to provide a comprehensive overview of the state-of-the-art in this rapidly evolving field and serve as a useful resource for researchers and practitioners working in the area of recommender systems.

Viaarxiv icon

Fast Graph Condensation with Structure-based Neural Tangent Kernel

Oct 17, 2023
Lin Wang, Wenqi Fan, Jiatong Li, Yao Ma, Qing Li

The rapid development of Internet technology has given rise to a vast amount of graph-structured data. Graph Neural Networks (GNNs), as an effective method for various graph mining tasks, incurs substantial computational resource costs when dealing with large-scale graph data. A data-centric manner solution is proposed to condense the large graph dataset into a smaller one without sacrificing the predictive performance of GNNs. However, existing efforts condense graph-structured data through a computational intensive bi-level optimization architecture also suffer from massive computation costs. In this paper, we propose reforming the graph condensation problem as a Kernel Ridge Regression (KRR) task instead of iteratively training GNNs in the inner loop of bi-level optimization. More specifically, We propose a novel dataset condensation framework (GC-SNTK) for graph-structured data, where a Structure-based Neural Tangent Kernel (SNTK) is developed to capture the topology of graph and serves as the kernel function in KRR paradigm. Comprehensive experiments demonstrate the effectiveness of our proposed model in accelerating graph condensation while maintaining high prediction performance.

* 15 pages, 6 figures, 5 tables 
Viaarxiv icon

Bongard-OpenWorld: Few-Shot Reasoning for Free-form Visual Concepts in the Real World

Oct 16, 2023
Rujie Wu, Xiaojian Ma, Qing Li, Wei Wang, Zhenliang Zhang, Song-Chun Zhu, Yizhou Wang

Figure 1 for Bongard-OpenWorld: Few-Shot Reasoning for Free-form Visual Concepts in the Real World
Figure 2 for Bongard-OpenWorld: Few-Shot Reasoning for Free-form Visual Concepts in the Real World
Figure 3 for Bongard-OpenWorld: Few-Shot Reasoning for Free-form Visual Concepts in the Real World
Figure 4 for Bongard-OpenWorld: Few-Shot Reasoning for Free-form Visual Concepts in the Real World

We introduce Bongard-OpenWorld, a new benchmark for evaluating real-world few-shot reasoning for machine vision. It originates from the classical Bongard Problems (BPs): Given two sets of images (positive and negative), the model needs to identify the set that query images belong to by inducing the visual concepts, which is exclusively depicted by images from the positive set. Our benchmark inherits the few-shot concept induction of the original BPs while adding the two novel layers of challenge: 1) open-world free-form concepts, as the visual concepts in Bongard-OpenWorld are unique compositions of terms from an open vocabulary, ranging from object categories to abstract visual attributes and commonsense factual knowledge; 2) real-world images, as opposed to the synthetic diagrams used by many counterparts. In our exploration, Bongard-OpenWorld already imposes a significant challenge to current few-shot reasoning algorithms. We further investigate to which extent the recently introduced Large Language Models (LLMs) and Vision-Language Models (VLMs) can solve our task, by directly probing VLMs, and combining VLMs and LLMs in an interactive reasoning scheme. We even designed a neuro-symbolic reasoning approach that reconciles LLMs & VLMs with logical reasoning to emulate the human problem-solving process for Bongard Problems. However, none of these approaches manage to close the human-machine gap, as the best learner achieves 64% accuracy while human participants easily reach 91%. We hope Bongard-OpenWorld can help us better understand the limitations of current visual intelligence and facilitate future research on visual agents with stronger few-shot visual reasoning capabilities.

* Project page: 
Viaarxiv icon

Leveraging Large Language Models (LLMs) to Empower Training-Free Dataset Condensation for Content-Based Recommendation

Oct 15, 2023
Jiahao Wu, Qijiong Liu, Hengchang Hu, Wenqi Fan, Shengcai Liu, Qing Li, Xiao-Ming Wu, Ke Tang

Modern techniques in Content-based Recommendation (CBR) leverage item content information to provide personalized services to users, but suffer from resource-intensive training on large datasets. To address this issue, we explore the dataset condensation for textual CBR in this paper. The goal of dataset condensation is to synthesize a small yet informative dataset, upon which models can achieve performance comparable to those trained on large datasets. While existing condensation approaches are tailored to classification tasks for continuous data like images or embeddings, direct application of them to CBR has limitations. To bridge this gap, we investigate efficient dataset condensation for content-based recommendation. Inspired by the remarkable abilities of large language models (LLMs) in text comprehension and generation, we leverage LLMs to empower the generation of textual content during condensation. To handle the interaction data involving both users and items, we devise a dual-level condensation method: content-level and user-level. At content-level, we utilize LLMs to condense all contents of an item into a new informative title. At user-level, we design a clustering-based synthesis module, where we first utilize LLMs to extract user interests. Then, the user interests and user embeddings are incorporated to condense users and generate interactions for condensed users. Notably, the condensation paradigm of this method is forward and free from iterative optimization on the synthesized dataset. Extensive empirical findings from our study, conducted on three authentic datasets, substantiate the efficacy of the proposed method. Particularly, we are able to approximate up to 97% of the original performance while reducing the dataset size by 95% (i.e., on dataset MIND).

Viaarxiv icon

Multi-Scale Spatial-Temporal Recurrent Networks for Traffic Flow Prediction

Oct 12, 2023
Haiyang Liu, Chunjiang Zhu, Detian Zhang, Qing Li

Figure 1 for Multi-Scale Spatial-Temporal Recurrent Networks for Traffic Flow Prediction
Figure 2 for Multi-Scale Spatial-Temporal Recurrent Networks for Traffic Flow Prediction
Figure 3 for Multi-Scale Spatial-Temporal Recurrent Networks for Traffic Flow Prediction
Figure 4 for Multi-Scale Spatial-Temporal Recurrent Networks for Traffic Flow Prediction

Traffic flow prediction is one of the most fundamental tasks of intelligent transportation systems. The complex and dynamic spatial-temporal dependencies make the traffic flow prediction quite challenging. Although existing spatial-temporal graph neural networks hold prominent, they often encounter challenges such as (1) ignoring the fixed graph that limits the predictive performance of the model, (2) insufficiently capturing complex spatial-temporal dependencies simultaneously, and (3) lacking attention to spatial-temporal information at different time lengths. In this paper, we propose a Multi-Scale Spatial-Temporal Recurrent Network for traffic flow prediction, namely MSSTRN, which consists of two different recurrent neural networks: the single-step gate recurrent unit and the multi-step gate recurrent unit to fully capture the complex spatial-temporal information in the traffic data under different time windows. Moreover, we propose a spatial-temporal synchronous attention mechanism that integrates adaptive position graph convolutions into the self-attention mechanism to achieve synchronous capture of spatial-temporal dependencies. We conducted extensive experiments on four real traffic datasets and demonstrated that our model achieves the best prediction accuracy with non-trivial margins compared to all the twenty baseline methods.

Viaarxiv icon