Stephen
Abstract:While Large Language Models (LLMs) have exhibited remarkable emergent capabilities through extensive pre-training, they still face critical limitations in generalizing to specialized domains and handling diverse linguistic variations, known as distribution shifts. In this paper, we propose a Test-Time Learning (TTL) paradigm for LLMs, namely TLM, which dynamically adapts LLMs to target domains using only unlabeled test data during testing. Specifically, we first provide empirical evidence and theoretical insights to reveal that more accurate predictions from LLMs can be achieved by minimizing the input perplexity of the unlabeled test data. Based on this insight, we formulate the Test-Time Learning process of LLMs as input perplexity minimization, enabling self-supervised enhancement of LLM performance. Furthermore, we observe that high-perplexity samples tend to be more informative for model optimization. Accordingly, we introduce a Sample Efficient Learning Strategy that actively selects and emphasizes these high-perplexity samples for test-time updates. Lastly, to mitigate catastrophic forgetting and ensure adaptation stability, we adopt Low-Rank Adaptation (LoRA) instead of full-parameter optimization, which allows lightweight model updates while preserving more original knowledge from the model. We introduce the AdaptEval benchmark for TTL and demonstrate through experiments that TLM improves performance by at least 20% compared to original LLMs on domain knowledge adaptation.
Abstract:Recently, text-to-image diffusion models have been widely used for style mimicry and personalized customization through methods such as DreamBooth and Textual Inversion. This has raised concerns about intellectual property protection and the generation of deceptive content. Recent studies, such as Glaze and Anti-DreamBooth, have proposed using adversarial noise to protect images from these attacks. However, recent purification-based methods, such as DiffPure and Noise Upscaling, have successfully attacked these latest defenses, showing the vulnerabilities of these methods. Moreover, present methods show limited transferability across models, making them less effective against unknown text-to-image models. To address these issues, we propose a novel anti-mimicry method, StyleGuard. We propose a novel style loss that optimizes the style-related features in the latent space to make it deviate from the original image, which improves model-agnostic transferability. Additionally, to enhance the perturbation's ability to bypass diffusion-based purification, we designed a novel upscale loss that involves ensemble purifiers and upscalers during training. Extensive experiments on the WikiArt and CelebA datasets demonstrate that StyleGuard outperforms existing methods in robustness against various transformations and purifications, effectively countering style mimicry in various models. Moreover, StyleGuard is effective on different style mimicry methods, including DreamBooth and Textual Inversion.
Abstract:Restoring nighttime images affected by multiple adverse weather conditions is a practical yet under-explored research problem, as multiple weather conditions often coexist in the real world alongside various lighting effects at night. This paper first explores the challenging multi-weather nighttime image restoration task, where various types of weather degradations are intertwined with flare effects. To support the research, we contribute the AllWeatherNight dataset, featuring large-scale high-quality nighttime images with diverse compositional degradations, synthesized using our introduced illumination-aware degradation generation. Moreover, we present ClearNight, a unified nighttime image restoration framework, which effectively removes complex degradations in one go. Specifically, ClearNight extracts Retinex-based dual priors and explicitly guides the network to focus on uneven illumination regions and intrinsic texture contents respectively, thereby enhancing restoration effectiveness in nighttime scenarios. In order to better represent the common and unique characters of multiple weather degradations, we introduce a weather-aware dynamic specific-commonality collaboration method, which identifies weather degradations and adaptively selects optimal candidate units associated with specific weather types. Our ClearNight achieves state-of-the-art performance on both synthetic and real-world images. Comprehensive ablation experiments validate the necessity of AllWeatherNight dataset as well as the effectiveness of ClearNight. Project page: https://henlyta.github.io/ClearNight/mainpage.html
Abstract:Acquiring accurately aligned multi-modal image pairs is fundamental for achieving high-quality multi-modal image fusion. To address the lack of ground truth in current multi-modal image registration and fusion methods, we propose a novel self-supervised \textbf{B}i-directional \textbf{S}elf-\textbf{R}egistration framework (\textbf{B-SR}). Specifically, B-SR utilizes a proxy data generator (PDG) and an inverse proxy data generator (IPDG) to achieve self-supervised global-local registration. Visible-infrared image pairs with spatially misaligned differences are aligned to obtain global differences through the registration module. The same image pairs are processed by PDG, such as cropping, flipping, stitching, etc., and then aligned to obtain local differences. IPDG converts the obtained local differences into pseudo-global differences, which are used to perform global-local difference consistency with the global differences. Furthermore, aiming at eliminating the effect of modal gaps on the registration module, we design a neighborhood dynamic alignment loss to achieve cross-modal image edge alignment. Extensive experiments on misaligned multi-modal images demonstrate the effectiveness of the proposed method in multi-modal image alignment and fusion against the competing methods. Our code will be publicly available.
Abstract:Large Language Models (LLMs) have shown outstanding performance across a variety of tasks, partly due to advanced prompting techniques. However, these techniques often require lengthy prompts, which increase computational costs and can hinder performance because of the limited context windows of LLMs. While prompt compression is a straightforward solution, existing methods confront the challenges of retaining essential information, adapting to context changes, and remaining effective across different tasks. To tackle these issues, we propose a task-agnostic method called Dynamic Compressing Prompts (LLM-DCP). Our method reduces the number of prompt tokens while aiming to preserve the performance as much as possible. We model prompt compression as a Markov Decision Process (MDP), enabling the DCP-Agent to sequentially remove redundant tokens by adapting to dynamic contexts and retaining crucial content. We develop a reward function for training the DCP-Agent that balances the compression rate, the quality of the LLM output, and the retention of key information. This allows for prompt token reduction without needing an external black-box LLM. Inspired by the progressive difficulty adjustment in curriculum learning, we introduce a Hierarchical Prompt Compression (HPC) training strategy that gradually increases the compression difficulty, enabling the DCP-Agent to learn an effective compression method that maintains information integrity. Experiments demonstrate that our method outperforms state-of-the-art techniques, especially at higher compression rates. The code for our approach will be available at https://github.com/Fhujinwu/DCP.
Abstract:Despite advancements in Graph Neural Networks (GNNs), adaptive attacks continue to challenge their robustness. Certified robustness based on randomized smoothing has emerged as a promising solution, offering provable guarantees that a model's predictions remain stable under adversarial perturbations within a specified range. However, existing methods face a critical trade-off between accuracy and robustness, as achieving stronger robustness requires introducing greater noise into the input graph. This excessive randomization degrades data quality and disrupts prediction consistency, limiting the practical deployment of certifiably robust GNNs in real-world scenarios where both accuracy and robustness are essential. To address this challenge, we propose \textbf{AuditVotes}, the first framework to achieve both high clean accuracy and certifiably robust accuracy for GNNs. It integrates randomized smoothing with two key components, \underline{au}gmentation and con\underline{dit}ional smoothing, aiming to improve data quality and prediction consistency. The augmentation, acting as a pre-processing step, de-noises the randomized graph, significantly improving data quality and clean accuracy. The conditional smoothing, serving as a post-processing step, employs a filtering function to selectively count votes, thereby filtering low-quality predictions and improving voting consistency. Extensive experimental results demonstrate that AuditVotes significantly enhances clean accuracy, certified robustness, and empirical robustness while maintaining high computational efficiency. Notably, compared to baseline randomized smoothing, AuditVotes improves clean accuracy by $437.1\%$ and certified accuracy by $409.3\%$ when the attacker can arbitrarily insert $20$ edges on the Cora-ML datasets, representing a substantial step toward deploying certifiably robust GNNs in real-world applications.
Abstract:We present Mobius, a novel method to generate seamlessly looping videos from text descriptions directly without any user annotations, thereby creating new visual materials for the multi-media presentation. Our method repurposes the pre-trained video latent diffusion model for generating looping videos from text prompts without any training. During inference, we first construct a latent cycle by connecting the starting and ending noise of the videos. Given that the temporal consistency can be maintained by the context of the video diffusion model, we perform multi-frame latent denoising by gradually shifting the first-frame latent to the end in each step. As a result, the denoising context varies in each step while maintaining consistency throughout the inference process. Moreover, the latent cycle in our method can be of any length. This extends our latent-shifting approach to generate seamless looping videos beyond the scope of the video diffusion model's context. Unlike previous cinemagraphs, the proposed method does not require an image as appearance, which will restrict the motions of the generated results. Instead, our method can produce more dynamic motion and better visual quality. We conduct multiple experiments and comparisons to verify the effectiveness of the proposed method, demonstrating its efficacy in different scenarios. All the code will be made available.
Abstract:We introduce Baichuan-Omni-1.5, an omni-modal model that not only has omni-modal understanding capabilities but also provides end-to-end audio generation capabilities. To achieve fluent and high-quality interaction across modalities without compromising the capabilities of any modality, we prioritized optimizing three key aspects. First, we establish a comprehensive data cleaning and synthesis pipeline for multimodal data, obtaining about 500B high-quality data (text, audio, and vision). Second, an audio-tokenizer (Baichuan-Audio-Tokenizer) has been designed to capture both semantic and acoustic information from audio, enabling seamless integration and enhanced compatibility with MLLM. Lastly, we designed a multi-stage training strategy that progressively integrates multimodal alignment and multitask fine-tuning, ensuring effective synergy across all modalities. Baichuan-Omni-1.5 leads contemporary models (including GPT4o-mini and MiniCPM-o 2.6) in terms of comprehensive omni-modal capabilities. Notably, it achieves results comparable to leading models such as Qwen2-VL-72B across various multimodal medical benchmarks.
Abstract:In recent research, adversarial attacks on person detectors using patches or static 3D model-based texture modifications have struggled with low success rates due to the flexible nature of human movement. Modeling the 3D deformations caused by various actions has been a major challenge. Fortunately, advancements in Neural Radiance Fields (NeRF) for dynamic human modeling offer new possibilities. In this paper, we introduce UV-Attack, a groundbreaking approach that achieves high success rates even with extensive and unseen human actions. We address the challenge above by leveraging dynamic-NeRF-based UV mapping. UV-Attack can generate human images across diverse actions and viewpoints, and even create novel actions by sampling from the SMPL parameter space. While dynamic NeRF models are capable of modeling human bodies, modifying clothing textures is challenging because they are embedded in neural network parameters. To tackle this, UV-Attack generates UV maps instead of RGB images and modifies the texture stacks. This approach enables real-time texture edits and makes the attack more practical. We also propose a novel Expectation over Pose Transformation loss (EoPT) to improve the evasion success rate on unseen poses and views. Our experiments show that UV-Attack achieves a 92.75% attack success rate against the FastRCNN model across varied poses in dynamic video settings, significantly outperforming the state-of-the-art AdvCamou attack, which only had a 28.50% ASR. Moreover, we achieve 49.5% ASR on the latest YOLOv8 detector in black-box settings. This work highlights the potential of dynamic NeRF-based UV mapping for creating more effective adversarial attacks on person detectors, addressing key challenges in modeling human movement and texture modification.
Abstract:As a novel way of presenting information, augmented reality (AR) enables people to interact with the physical world in a direct and intuitive way. While there are some mobile AR products implemented with specific hardware at a high cost, the software approaches of AR implementation on mobile platforms(such as smartphones, tablet PC, etc.) are still far from practical use. GPS-based mobile AR systems usually perform poorly due to the inaccurate positioning in the indoor environment. Previous vision-based pose estimation methods need to continuously track predefined markers within a short distance, which greatly degrade user experience. This paper first conducts a comprehensive study of the state-of-the-art AR and localization systems on mobile platforms. Then, we propose an effective indoor mobile AR framework. In the framework, a fusional localization method and a new pose estimation implementation are developed to increase the overall matching rate and thus improving AR display accuracy. Experiments show that our framework has higher performance than approaches purely based on images or Wi-Fi signals. We achieve low average error distances (0.61-0.81m) and accurate matching rates (77%-82%) when the average sampling grid length is set to 0.5m.