Abstract:This paper presents a family of advanced vision encoder, named OpenVision 3, that learns a single, unified visual representation that can serve both image understanding and image generation. Our core architecture is simple: we feed VAE-compressed image latents to a ViT encoder and train its output to support two complementary roles. First, the encoder output is passed to the ViT-VAE decoder to reconstruct the original image, encouraging the representation to capture generative structure. Second, the same representation is optimized with contrastive learning and image-captioning objectives, strengthening semantic features. By jointly optimizing reconstruction- and semantics-driven signals in a shared latent space, the encoder learns representations that synergize and generalize well across both regimes. We validate this unified design through extensive downstream evaluations with the encoder frozen. For multimodal understanding, we plug the encoder into the LLaVA-1.5 framework: it performs comparably with a standard CLIP vision encoder (e.g., 62.4 vs 62.2 on SeedBench, and 83.7 vs 82.9 on POPE). For generation, we test it under the RAE framework: ours substantially surpasses the standard CLIP-based encoder (e.g., gFID: 1.89 vs 2.54 on ImageNet). We hope this work can spur future research on unified modeling.
Abstract:Recent image generation models have shown impressive progress, yet they often struggle to yield controllable and consistent results when users attempt to edit specific elements within an existing image. Layered representations enable flexible, user-driven content creation, but existing approaches often fail to produce layers with coherent compositing relationships, and their object layers typically lack realistic visual effects such as shadows and reflections. To overcome these limitations, we propose LASAGNA, a novel, unified framework that generates an image jointly with its composing layers--a photorealistic background and a high-quality transparent foreground with compelling visual effects. Unlike prior work, LASAGNA efficiently learns correct image composition from a wide range of conditioning inputs--text prompts, foreground, background, and location masks--offering greater controllability for real-world applications. To enable this, we introduce LASAGNA-48K, a new dataset composed of clean backgrounds and RGBA foregrounds with physically grounded visual effects. We also propose LASAGNABENCH, the first benchmark for layer editing. We demonstrate that LASAGNA excels in generating highly consistent and coherent results across multiple image layers simultaneously, enabling diverse post-editing applications that accurately preserve identity and visual effects. LASAGNA-48K and LASAGNABENCH will be publicly released to foster open research in the community. The project page is https://rayjryang.github.io/LASAGNA-Page/.
Abstract:Retrieval-augmented Generation (RAG) is a prevalent approach for domain-specific LLMs, yet it is often plagued by "Retrieval Hallucinations"--a phenomenon where fine-tuned models fail to recognize and act upon poor-quality retrieved documents, thus undermining performance. To address this, we propose the Adversarial Collaboration RAG (AC-RAG) framework. AC-RAG employs two heterogeneous agents: a generalist Detector that identifies knowledge gaps, and a domain-specialized Resolver that provides precise solutions. Guided by a moderator, these agents engage in an adversarial collaboration, where the Detector's persistent questioning challenges the Resolver's expertise. This dynamic process allows for iterative problem dissection and refined knowledge retrieval. Extensive experiments show that AC-RAG significantly improves retrieval accuracy and outperforms state-of-the-art RAG methods across various vertical domains.
Abstract:Large Language Models (LLMs) have demonstrated impressive capabilities across various tasks, but fine-tuning them for domain-specific applications often requires substantial domain-specific data that may be distributed across multiple organizations. Federated Learning (FL) offers a privacy-preserving solution, but faces challenges with computational constraints when applied to LLMs. Low-Rank Adaptation (LoRA) has emerged as a parameter-efficient fine-tuning approach, though a single LoRA module often struggles with heterogeneous data across diverse domains. This paper addresses two critical challenges in federated LoRA fine-tuning: 1. determining the optimal number and allocation of LoRA experts across heterogeneous clients, and 2. enabling clients to selectively utilize these experts based on their specific data characteristics. We propose FedLEASE (Federated adaptive LoRA Expert Allocation and SElection), a novel framework that adaptively clusters clients based on representation similarity to allocate and train domain-specific LoRA experts. It also introduces an adaptive top-$M$ Mixture-of-Experts mechanism that allows each client to select the optimal number of utilized experts. Our extensive experiments on diverse benchmark datasets demonstrate that FedLEASE significantly outperforms existing federated fine-tuning approaches in heterogeneous client settings while maintaining communication efficiency.




Abstract:Recent advancements in large multimodal models like GPT-4o have set a new standard for high-fidelity, instruction-guided image editing. However, the proprietary nature of these models and their training data creates a significant barrier for open-source research. To bridge this gap, we introduce GPT-IMAGE-EDIT-1.5M, a publicly available, large-scale image-editing corpus containing more than 1.5 million high-quality triplets (instruction, source image, edited image). We systematically construct this dataset by leveraging the versatile capabilities of GPT-4o to unify and refine three popular image-editing datasets: OmniEdit, HQ-Edit, and UltraEdit. Specifically, our methodology involves 1) regenerating output images to enhance visual quality and instruction alignment, and 2) selectively rewriting prompts to improve semantic clarity. To validate the efficacy of our dataset, we fine-tune advanced open-source models on GPT-IMAGE-EDIT-1.5M. The empirical results are exciting, e.g., the fine-tuned FluxKontext achieves highly competitive performance across a comprehensive suite of benchmarks, including 7.24 on GEdit-EN, 3.80 on ImgEdit-Full, and 8.78 on Complex-Edit, showing stronger instruction following and higher perceptual quality while maintaining identity. These scores markedly exceed all previously published open-source methods and substantially narrow the gap to leading proprietary models. We hope the full release of GPT-IMAGE-EDIT-1.5M can help to catalyze further open research in instruction-guided image editing.
Abstract:Vision-language retrieval (VLR) has attracted significant attention in both academia and industry, which involves using text (or images) as queries to retrieve corresponding images (or text). However, existing methods often neglect the rich visual semantics knowledge of entities, thus leading to incorrect retrieval results. To address this problem, we propose the Entity Visual Description enhanced CLIP (EvdCLIP), designed to leverage the visual knowledge of entities to enrich queries. Specifically, since humans recognize entities through visual cues, we employ a large language model (LLM) to generate Entity Visual Descriptions (EVDs) as alignment cues to complement textual data. These EVDs are then integrated into raw queries to create visually-rich, EVD-enhanced queries. Furthermore, recognizing that EVD-enhanced queries may introduce noise or low-quality expansions, we develop a novel, trainable EVD-aware Rewriter (EaRW) for vision-language retrieval tasks. EaRW utilizes EVD knowledge and the generative capabilities of the language model to effectively rewrite queries. With our specialized training strategy, EaRW can generate high-quality and low-noise EVD-enhanced queries. Extensive quantitative and qualitative experiments on image-text retrieval benchmarks validate the superiority of EvdCLIP on vision-language retrieval tasks.
Abstract:Fine-tuning large language models (LLMs) in federated settings enables privacy-preserving adaptation but suffers from cross-client interference due to model aggregation. Existing federated LoRA fine-tuning methods, primarily based on FedAvg, struggle with data heterogeneity, leading to harmful cross-client interference and suboptimal personalization. In this work, we propose \textbf{FedALT}, a novel personalized federated LoRA fine-tuning algorithm that fundamentally departs from FedAvg. Instead of using an aggregated model to initialize local training, each client continues training its individual LoRA while incorporating shared knowledge through a separate Rest-of-the-World (RoTW) LoRA component. To effectively balance local adaptation and global information, FedALT introduces an adaptive mixer that dynamically learns input-specific weightings between the individual and RoTW LoRA components using the Mixture-of-Experts (MoE) principle. Through extensive experiments on NLP benchmarks, we demonstrate that FedALT significantly outperforms state-of-the-art personalized federated LoRA fine-tuning methods, achieving superior local adaptation without sacrificing computational efficiency.
Abstract:The success of multi-modal large language models (MLLMs) has been largely attributed to the large-scale training data. However, the training data of many MLLMs is unavailable due to privacy concerns. The expensive and labor-intensive process of collecting multi-modal data further exacerbates the problem. Is it possible to synthesize multi-modal training data automatically without compromising diversity and quality? In this paper, we propose a new method, Oasis, to synthesize high-quality multi-modal data with only images. Oasis breaks through traditional methods by prompting only images to the MLLMs, thus extending the data diversity by a large margin. Our method features a delicate quality control method which ensures the data quality. We collected over 500k data and conducted incremental experiments on LLaVA-NeXT. Extensive experiments demonstrate that our method can significantly improve the performance of MLLMs. The image-based synthesis also allows us to focus on the specific-domain ability of MLLMs. Code and data will be publicly available.




Abstract:Foundation models (FMs) achieve strong performance across diverse tasks with task-specific fine-tuning, yet full parameter fine-tuning is often computationally prohibitive for large models. Parameter-efficient fine-tuning (PEFT) methods like Low-Rank Adaptation (LoRA) reduce this cost by introducing low-rank matrices for tuning fewer parameters. While LoRA allows for efficient fine-tuning, it requires significant data for adaptation, making Federated Learning (FL) an appealing solution due to its privacy-preserving collaborative framework. However, combining LoRA with FL introduces two key challenges: the \textbf{Server-Side LoRA Aggregation Bias}, where server-side averaging of LoRA matrices diverges from the ideal global update, and the \textbf{Client-Side LoRA Initialization Drift}, emphasizing the need for consistent initialization across rounds. Existing approaches address these challenges individually, limiting their effectiveness. We propose LoRA-FAIR, a novel method that tackles both issues by introducing a correction term on the server while keeping the original LoRA modules, enhancing aggregation efficiency and accuracy. LoRA-FAIR maintains computational and communication efficiency, yielding superior performance over state-of-the-art methods. Experimental results on ViT and MLP-Mixer models across large-scale datasets demonstrate that LoRA-FAIR consistently achieves performance improvements in FL settings.




Abstract:Recent advancements in Deep Neural Networks (DNNs) have catalyzed the development of numerous intelligent mobile applications and services. However, they also introduce significant computational challenges for resource-constrained mobile devices. To address this, collaborative edge inference has been proposed. This method involves partitioning a DNN inference task into several subtasks and distributing these across multiple network nodes. Despite its potential, most current approaches presume known network parameters -- like node processing speeds and link transmission rates -- or rely on a fixed sequence of nodes for processing the DNN subtasks. In this paper, we tackle a more complex scenario where network parameters are unknown and must be learned, and multiple network paths are available for distributing inference tasks. Specifically, we explore the learning problem of selecting the optimal network path and assigning DNN layers to nodes along this path, considering potential security threats and the costs of switching paths. We begin by deriving structural insights from the DNN layer assignment with complete network information, which narrows down the decision space and provides crucial understanding of optimal assignments. We then cast the learning problem with incomplete network information as a novel adversarial group linear bandits problem with switching costs, featuring rewards generation through a combined stochastic and adversarial process. We introduce a new bandit algorithm, B-EXPUCB, which combines elements of the classical blocked EXP3 and LinUCB algorithms, and demonstrate its sublinear regret. Extensive simulations confirm B-EXPUCB's superior performance in learning for collaborative edge inference over existing algorithms.