Abstract:Most existing Zero-Shot Text-To-Speech(ZS-TTS) systems generate the unseen speech based on single prompt, such as reference speech or text descriptions, which limits their flexibility. We propose a customized emotion ZS-TTS system based on multi-modal prompt. The system disentangles speech into the content, timbre, emotion and prosody, allowing emotion prompts to be provided as text, image or speech. To extract emotion information from different prompts, we propose a multi-modal prompt emotion encoder. Additionally, we introduce an prosody predictor to fit the distribution of prosody and propose an emotion consistency loss to preserve emotion information in the predicted prosody. A diffusion-based acoustic model is employed to generate the target mel-spectrogram. Both objective and subjective experiments demonstrate that our system outperforms existing systems in terms of naturalness and similarity. The samples are available at https://mpetts-demo.github.io/mpetts_demo/.
Abstract:In the Text-to-speech(TTS) task, the latent diffusion model has excellent fidelity and generalization, but its expensive resource consumption and slow inference speed have always been a challenging. This paper proposes Discrete Diffusion Model with Contrastive Learning for Text-to-Speech Generation(DCTTS). The following contributions are made by DCTTS: 1) The TTS diffusion model based on discrete space significantly lowers the computational consumption of the diffusion model and improves sampling speed; 2) The contrastive learning method based on discrete space is used to enhance the alignment connection between speech and text and improve sampling quality; and 3) It uses an efficient text encoder to simplify the model's parameters and increase computational efficiency. The experimental results demonstrate that the approach proposed in this paper has outstanding speech synthesis quality and sampling speed while significantly reducing the resource consumption of diffusion model. The synthesized samples are available at https://github.com/lawtherWu/DCTTS.