Henry
Abstract:This paper proposes a new architecture for the low-earth orbit (LEO) satellite ground station aided by movable antenna (MA) array. Unlike conventional fixed-position antenna (FPA), the MA array can flexibly adjust antenna positions to reconfigure array geometry, for more effectively mitigating interference and improving communication performance in ultra-dense LEO satellite networks. To reduce movement overhead, we configure antenna positions at the antenna initialization stage, which remain unchanged during the whole communication period of the ground station. To this end, an optimization problem is formulated to maximize the average achievable rate of the ground station by jointly optimizing its antenna position vector (APV) and time-varying beamforming weights, i.e., antenna weight vectors (AWVs). To solve the resulting non-convex optimization problem, we adopt the Lagrangian dual transformation and quadratic transformation to reformulate the objective function into a more tractable form. Then, we develop an efficient block coordinate descent-based iterative algorithm that alternately optimizes the APV and AWVs until convergence is reached. Simulation results demonstrate that our proposed MA scheme significantly outperforms traditional FPA by increasing the achievable rate at ground stations under various system setups, thus providing an efficient solution for interference mitigation in future ultra-dense LEO satellite communication networks.
Abstract:This paper studies the intelligent reflecting surface (IRS) deployment optimization problem for IRS-enabled integrated sensing and communications (ISAC) systems, in which multiple IRSs are strategically deployed at candidate locations to assist a base station (BS) to enhance the coverage of both sensing and communications. We present an environment-aware IRS deployment design via exploiting the channel knowledge map (CKM), which provides the channel state information (CSI) between each candidate IRS location and BS or targeted sensing/communication points. Based on the obtained CSI from CKM, we optimize the deployment of IRSs, jointly with the BS's transmit beamforming and IRSs' reflective beamforming during operation, with the objective of minimizing the system cost, while guaranteeing the minimum illumination power requirements at sensing areas and the minimum signal-to-noise ratio (SNR) requirements at communication areas. In particular, we consider two cases when the IRSs' reflective beamforming optimization can be implemented dynamically in real time and quasi-stationarily over the whole operation period, respectively. For both cases, the joint IRS deployment and transmit/reflective beamforming designs are formulated as mixed-integer non-convex optimization problems, which are solved via the successive convex approximation (SCA)-based relax-and-bound method. Specifically, we first relax the binary IRS deployment indicators into continuous variables, then find converged solutions via SCA, and finally round relaxed indicators back to binary values. Numerical results demonstrate the effectiveness of our proposed algorithms in reducing the system cost while meeting the sensing and communication requirements.
Abstract:Global human motion reconstruction from in-the-wild monocular videos is increasingly demanded across VR, graphics, and robotics applications, yet requires accurate mapping of human poses from camera to world coordinates-a task challenged by depth ambiguity, motion ambiguity, and the entanglement between camera and human movements. While human-motion-centric approaches excel in preserving motion details and physical plausibility, they suffer from two critical limitations: insufficient exploitation of camera orientation information and ineffective integration of camera translation cues. We present WATCH (World-aware Allied Trajectory and pose reconstruction for Camera and Human), a unified framework addressing both challenges. Our approach introduces an analytical heading angle decomposition technique that offers superior efficiency and extensibility compared to existing geometric methods. Additionally, we design a camera trajectory integration mechanism inspired by world models, providing an effective pathway for leveraging camera translation information beyond naive hard-decoding approaches. Through experiments on in-the-wild benchmarks, WATCH achieves state-of-the-art performance in end-to-end trajectory reconstruction. Our work demonstrates the effectiveness of jointly modeling camera-human motion relationships and offers new insights for addressing the long-standing challenge of camera translation integration in global human motion reconstruction. The code will be available publicly.
Abstract:Vision-Language Models (VLMs) are increasingly deployed in real-world applications, but their high inference cost makes them vulnerable to resource consumption attacks. Prior attacks attempt to extend VLM output sequences by optimizing adversarial images, thereby increasing inference costs. However, these extended outputs often introduce irrelevant abnormal content, compromising attack stealthiness. This trade-off between effectiveness and stealthiness poses a major limitation for existing attacks. To address this challenge, we propose \textit{Hidden Tail}, a stealthy resource consumption attack that crafts prompt-agnostic adversarial images, inducing VLMs to generate maximum-length outputs by appending special tokens invisible to users. Our method employs a composite loss function that balances semantic preservation, repetitive special token induction, and suppression of the end-of-sequence (EOS) token, optimized via a dynamic weighting strategy. Extensive experiments show that \textit{Hidden Tail} outperforms existing attacks, increasing output length by up to 19.2$\times$ and reaching the maximum token limit, while preserving attack stealthiness. These results highlight the urgent need to improve the robustness of VLMs against efficiency-oriented adversarial threats. Our code is available at https://github.com/zhangrui4041/Hidden_Tail.
Abstract:Recent progress in large language models (LLMs) has leveraged their in-context learning (ICL) abilities to enable quick adaptation to unseen biomedical NLP tasks. By incorporating only a few input-output examples into prompts, LLMs can rapidly perform these new tasks. While the impact of these demonstrations on LLM performance has been extensively studied, most existing approaches prioritize representativeness over diversity when selecting examples from large corpora. To address this gap, we propose Dual-Div, a diversity-enhanced data-efficient framework for demonstration selection in biomedical ICL. Dual-Div employs a two-stage retrieval and ranking process: First, it identifies a limited set of candidate examples from a corpus by optimizing both representativeness and diversity (with optional annotation for unlabeled data). Second, it ranks these candidates against test queries to select the most relevant and non-redundant demonstrations. Evaluated on three biomedical NLP tasks (named entity recognition (NER), relation extraction (RE), and text classification (TC)) using LLaMA 3.1 and Qwen 2.5 for inference, along with three retrievers (BGE-Large, BMRetriever, MedCPT), Dual-Div consistently outperforms baselines-achieving up to 5% higher macro-F1 scores-while demonstrating robustness to prompt permutations and class imbalance. Our findings establish that diversity in initial retrieval is more critical than ranking-stage optimization, and limiting demonstrations to 3-5 examples maximizes performance efficiency.
Abstract:Multi-sequence Magnetic Resonance Imaging (MRI) offers remarkable versatility, enabling the distinct visualization of different tissue types. Nevertheless, the inherent heterogeneity among MRI sequences poses significant challenges to the generalization capability of deep learning models. These challenges undermine model performance when faced with varying acquisition parameters, thereby severely restricting their clinical utility. In this study, we present PRISM, a foundation model PRe-trained with large-scale multI-Sequence MRI. We collected a total of 64 datasets from both public and private sources, encompassing a wide range of whole-body anatomical structures, with scans spanning diverse MRI sequences. Among them, 336,476 volumetric MRI scans from 34 datasets (8 public and 26 private) were curated to construct the largest multi-organ multi-sequence MRI pretraining corpus to date. We propose a novel pretraining paradigm that disentangles anatomically invariant features from sequence-specific variations in MRI, while preserving high-level semantic representations. We established a benchmark comprising 44 downstream tasks, including disease diagnosis, image segmentation, registration, progression prediction, and report generation. These tasks were evaluated on 32 public datasets and 5 private cohorts. PRISM consistently outperformed both non-pretrained models and existing foundation models, achieving first-rank results in 39 out of 44 downstream benchmarks with statistical significance improvements. These results underscore its ability to learn robust and generalizable representations across unseen data acquired under diverse MRI protocols. PRISM provides a scalable framework for multi-sequence MRI analysis, thereby enhancing the translational potential of AI in radiology. It delivers consistent performance across diverse imaging protocols, reinforcing its clinical applicability.
Abstract:Accurately predicting beam-level reference signal received power (RSRP) is essential for beam management in dense multi-user wireless networks, yet challenging due to high measurement overhead and fast channel variations. This paper proposes Neural Beam Field (NBF), a hybrid neural-physical framework for efficient and interpretable spatial beam RSRP prediction. Central to our approach is the introduction of the Multi-path Conditional Power Profile (MCPP), which bridges site-specific multipath propagation with antenna/beam configurations via closed-form analytical modeling. We adopt a decoupled ``blackbox-whitebox" design: a Transformer-based deep neural network (DNN) learns the MCPP from sparse user measurements and positions, while a physics-inspired module analytically infers beam RSRP statistics. To improve convergence and adaptivity, we further introduce a Pretrain-and-Calibrate (PaC) strategy that leverages ray-tracing priors and on-site calibration using RSRP data. Extensive simulations results demonstrate that NBF significantly outperforms conventional table-based channel knowledge maps (CKMs) and pure blackbox DNNs in prediction accuracy, training efficiency, and generalization, while maintaining a compact model size. The proposed framework offers a scalable and physically grounded solution for intelligent beam management in next-generation dense wireless networks.
Abstract:As large language models (LLMs) become increasingly integrated into clinical decision-making, ensuring transparent and trustworthy reasoning is essential. However, existing evaluation strategies of LLMs' medical reasoning capability either suffer from unsatisfactory assessment or poor scalability, and a rigorous benchmark remains lacking. To address this, we introduce MedThink-Bench, a benchmark designed for rigorous, explainable, and scalable assessment of LLMs' medical reasoning. MedThink-Bench comprises 500 challenging questions across ten medical domains, each annotated with expert-crafted step-by-step rationales. Building on this, we propose LLM-w-Ref, a novel evaluation framework that leverages fine-grained rationales and LLM-as-a-Judge mechanisms to assess intermediate reasoning with expert-level fidelity while maintaining scalability. Experiments show that LLM-w-Ref exhibits a strong positive correlation with expert judgments. Benchmarking twelve state-of-the-art LLMs, we find that smaller models (e.g., MedGemma-27B) can surpass larger proprietary counterparts (e.g., OpenAI-o3). Overall, MedThink-Bench offers a foundational tool for evaluating LLMs' medical reasoning, advancing their safe and responsible deployment in clinical practice.
Abstract:Extremely large antenna arrays (ELAAs) operating in high-frequency bands have spurred the development of near-field communication, driving advancements in beam training and signal processing design. In this work, we present a low-complexity near-field beam training scheme that fully utilizes the conventional discrete Fourier transform (DFT) codebook designed for far-field users. We begin by analyzing the received beam pattern in the near field and derive closed-form expressions for the beam width and central gain. These analytical results enable the definition of an angle-dependent, modified Rayleigh distance, which effectively distinguishes near-field and far-field user regimes. Building on the analysis, we develop a direct and computationally efficient method to estimate user distance, with a complexity of O(1), and further improve its accuracy through a simple refinement. Simulation results demonstrate significant gains in both single- and multi-user settings, with up to 2.38 dB SNR improvement over exhaustive search. To further enhance estimation accuracy, we additionally propose a maximum likelihood estimation (MLE) based refinement method, leveraging the Rician distribution of signal amplitudes and achieving accuracy close to the Cramer--Rao bound (CRB). Simulation shows the single-user and multi-user achievable rates can both approach those obtained with ideal channel state information.
Abstract:With the rapid advancement of aerospace technology and the large-scale deployment of low Earth orbit (LEO) satellite constellations, the challenges facing astronomical observations and deep space exploration have become increasingly pronounced. As a result, the demand for high-precision orbital data on space objects-along with comprehensive analyses of satellite positioning, constellation configurations, and deep space satellite dynamics-has grown more urgent. However, there remains a notable lack of publicly accessible, real-world datasets to support research in areas such as space object maneuver behavior prediction and collision risk assessment. This study seeks to address this gap by collecting and curating a representative dataset of maneuvering behavior from Starlink satellites. The dataset integrates Two-Line Element (TLE) catalog data with corresponding high-precision ephemeris data, thereby enabling a more realistic and multidimensional modeling of space object behavior. It provides valuable insights into practical deployment of maneuver detection methods and the evaluation of collision risks in increasingly congested orbital environments.