Henry
Abstract:In graph self-supervised learning, masked autoencoders (MAE) and contrastive learning (CL) are two prominent paradigms. MAE focuses on reconstructing masked elements, while CL maximizes similarity between augmented graph views. Recent studies highlight their complementarity: MAE excels at local feature capture, and CL at global information extraction. Hybrid frameworks for homogeneous graphs have been proposed, but face challenges in designing shared encoders to meet the semantic requirements of both tasks. In semantically sparse scenarios, CL struggles with view construction, and gradient imbalance between positive and negative samples persists. This paper introduces HetCRF, a novel dual-channel self-supervised learning framework for heterogeneous graphs. HetCRF uses a two-stage aggregation strategy to adapt embedding semantics, making it compatible with both MAE and CL. To address semantic sparsity, it enhances encoder output for view construction instead of relying on raw features, improving efficiency. Two positive sample augmentation strategies are also proposed to balance gradient contributions. Node classification experiments on four real-world heterogeneous graph datasets demonstrate that HetCRF outperforms state-of-the-art baselines. On datasets with missing node features, such as Aminer and Freebase, at a 40% label rate in node classification, HetCRF improves the Macro-F1 score by 2.75% and 2.2% respectively compared to the second-best baseline, validating its effectiveness and superiority.
Abstract:Self-supervised learning (SSL) methods have been increasingly applied to diverse downstream tasks due to their superior generalization capabilities and low annotation costs. However, most existing heterogeneous graph SSL models convert heterogeneous graphs into homogeneous ones via meta-paths for training, which only leverage information from nodes at both ends of meta-paths while underutilizing the heterogeneous node information along the meta-paths. To address this limitation, this paper proposes a novel framework named IMPA-HGAE to enhance target node embeddings by fully exploiting internal node information along meta-paths. Experimental results validate that IMPA-HGAE achieves superior performance on heterogeneous datasets. Furthermore, this paper introduce innovative masking strategies to strengthen the representational capacity of generative SSL models on heterogeneous graph data. Additionally, this paper discuss the interpretability of the proposed method and potential future directions for generative self-supervised learning in heterogeneous graphs. This work provides insights into leveraging meta-path-guided structural semantics for robust representation learning in complex graph scenarios.
Abstract:Complex interactions among agents present a significant challenge for autonomous driving in real-world scenarios. Recently, a promising approach has emerged, which formulates the interactions of agents as a level-k game framework. It effectively decouples agent policies by hierarchical game levels. However, this framework ignores both the varying driving complexities among agents and the dynamic changes in agent states across game levels, instead treating them uniformly. Consequently, redundant and error-prone computations are introduced into this framework. To tackle the issue, this paper proposes a metric, termed as Trajectory Entropy, to reveal the game status of agents within the level-k game framework. The key insight stems from recognizing the inherit relationship between agent policy uncertainty and the associated driving complexity. Specifically, Trajectory Entropy extracts statistical signals representing uncertainty from the multimodality trajectory prediction results of agents in the game. Then, the signal-to-noise ratio of this signal is utilized to quantify the game status of agents. Based on the proposed Trajectory Entropy, we refine the current level-k game framework through a simple gating mechanism, significantly improving overall accuracy while reducing computational costs. Our method is evaluated on the Waymo and nuPlan datasets, in terms of trajectory prediction, open-loop and closed-loop planning tasks. The results demonstrate the state-of-the-art performance of our method, with precision improved by up to 19.89% for prediction and up to 16.48% for planning.
Abstract:Processor chip design technology serves as a key frontier driving breakthroughs in computer science and related fields. With the rapid advancement of information technology, conventional design paradigms face three major challenges: the physical constraints of fabrication technologies, the escalating demands for design resources, and the increasing diversity of ecosystems. Automated processor chip design has emerged as a transformative solution to address these challenges. While recent breakthroughs in Artificial Intelligence (AI), particularly Large Language Models (LLMs) techniques, have opened new possibilities for fully automated processor chip design, substantial challenges remain in establishing domain-specific LLMs for processor chip design. In this paper, we propose QiMeng, a novel system for fully automated hardware and software design of processor chips. QiMeng comprises three hierarchical layers. In the bottom-layer, we construct a domain-specific Large Processor Chip Model (LPCM) that introduces novel designs in architecture, training, and inference, to address key challenges such as knowledge representation gap, data scarcity, correctness assurance, and enormous solution space. In the middle-layer, leveraging the LPCM's knowledge representation and inference capabilities, we develop the Hardware Design Agent and the Software Design Agent to automate the design of hardware and software for processor chips. Currently, several components of QiMeng have been completed and successfully applied in various top-layer applications, demonstrating significant advantages and providing a feasible solution for efficient, fully automated hardware/software design of processor chips. Future research will focus on integrating all components and performing iterative top-down and bottom-up design processes to establish a comprehensive QiMeng system.
Abstract:Large language models (LLMs) trained via reinforcement learning with verifiable reward (RLVR) have achieved breakthroughs on tasks with explicit, automatable verification, such as software programming and mathematical problems. Extending RLVR to electronic design automation (EDA), especially automatically generating hardware description languages (HDLs) like Verilog from natural-language (NL) specifications, however, poses three key challenges: the lack of automated and accurate verification environments, the scarcity of high-quality NL-code pairs, and the prohibitive computation cost of RLVR. To this end, we introduce CodeV-R1, an RLVR framework for training Verilog generation LLMs. First, we develop a rule-based testbench generator that performs robust equivalence checking against golden references. Second, we propose a round-trip data synthesis method that pairs open-source Verilog snippets with LLM-generated NL descriptions, verifies code-NL-code consistency via the generated testbench, and filters out inequivalent examples to yield a high-quality dataset. Third, we employ a two-stage "distill-then-RL" training pipeline: distillation for the cold start of reasoning abilities, followed by adaptive DAPO, our novel RLVR algorithm that can reduce training cost by adaptively adjusting sampling rate. The resulting model, CodeV-R1-7B, achieves 68.6% and 72.9% pass@1 on VerilogEval v2 and RTLLM v1.1, respectively, surpassing prior state-of-the-art by 12~20%, while matching or even exceeding the performance of 671B DeepSeek-R1. We will release our model, training pipeline, and dataset to facilitate research in EDA and LLM communities.
Abstract:In this paper, we propose a new form of polarization reconfigurable antennas (PRAs) that can form linear, circular, and general elliptical polarizations assisted by phase shifters (PSs). With PRAs, polarforming is achieved, which enables the antenna to shape its polarization into a desired state for aligning with that of the received electromagnetic (EM) wave or reconfiguring that of the transmit EM wave. To demonstrate the benefits of polarforming, we investigate a PRA-aided single-input single-output (SISO) communication system equipped with tunable PSs for polarization adaptation. We characterize the achievable signal-to-noise ratio (SNR) at the receiver as a function of the phase shifts of PS-based PRAs. Moreover, we develop an alternating optimization approach to maximize the SNR by optimizing the phase shifts at both the transmitter and receiver. Finally, comprehensive simulation results are presented, which not only validate the effectiveness of polarforming in mitigating the channel depolarization effects, but also demonstrate its substantial performance improvement over conventional systems.
Abstract:Unmanned aerial vehicle (UAV) is regarded as a key enabling platform for low-altitude economy, due to its advantages such as 3D maneuverability, flexible deployment, and LoS air-to-air/ground communication links. In particular, the intrinsic high mobility renders UAV especially suitable for operating as a movable antenna (MA) from the sky. In this paper, by exploiting the flexible mobility of UAV swarm and antenna position adjustment of MA, we propose a novel UAV swarm enabled two-level MA system, where UAVs not only individually deploy a local MA array, but also form a larger-scale MA system with their individual MA arrays via swarm coordination. We formulate a general optimization problem to maximize the minimum achievable rate over all ground UEs, by jointly optimizing the 3D UAV swarm placement positions, their individual MAs' positions, and receive beamforming for different UEs. We first consider the special case where each UAV has only one antenna, under different scenarios of one single UE, two UEs, and arbitrary number of UEs. In particular, for the two-UE case, we derive the optimal UAV swarm placement positions in closed-form that achieves IUI-free communication, where the UAV swarm forms a uniform sparse array (USA) satisfying collision avoidance constraint. While for the general case with arbitrary number of UEs, we propose an efficient alternating optimization algorithm to solve the formulated non-convex optimization problem. Then, we extend the results to the case where each UAV is equipped with multiple antennas. Numerical results verify that the proposed low-altitude UAV swarm enabled MA system significantly outperforms various benchmark schemes, thanks to the exploitation of two-level mobility to create more favorable channel conditions for multi-UE communications.
Abstract:Partial differential equations (PDEs) govern the spatiotemporal evolution of various physical systems. Classical numerical solvers, while accurate, require fine discretization and full knowledge of the governing PDEs, limiting their applicability when the physics is unknown or fast inference is required. Data-driven neural PDE solvers alleviate these constraints by learning from data but demand large training datasets and perform poorly in data-scarce regimes. Physics-aware methods mitigate data requirements by incorporating physical knowledge yet rely on known PDE terms or local numerical schemes, restricting their ability to handle unknown or globally coupled systems. In this work, we propose the Spectral-inspired Neural Operator (SINO), a novel framework that learns PDE operators from limited trajectories (as few as 2-5), without any known PDE terms. SINO operates in the frequency domain and introduces a Frequency-to-Vector module to learn spectral representations analogous to derivative multipliers. To model nonlinear physical interactions, we design a nonlinear operator block that includes a $\Pi$-Block with low-pass filtering to prevent aliasing. Finally, we introduce an operator distillation technique to distill the trained model for efficient inference. SINO achieves state-of-the-art results across multiple PDE benchmarks, demonstrating strong discretization invariance and robust generalization to out-of-distribution initial conditions. To our knowledge, SINO is the first physics-aware method capable of accurately simulating globally coupled systems (e.g., the Navier-Stokes equations) from limited data without any explicit PDE terms.
Abstract:Polarforming emerges as a promising technique for manipulating the polarization of electromagnetic (EM) waves by shaping the polarization of an antenna into a desired state. By dynamically adjusting antenna polarization, polarforming enables real-time polarization matching or mismatching with received EM waves, thereby leveraging polarization degrees of freedom (DoFs) to enhance wireless communication performance. In this article, we first present an overview of the fundamental principles and design approaches underlying the polarforming technique. We then analyze the key advantages of polarforming, including hardware cost reduction, depolarization mitigation, channel adaptation, signal power enhancement, and interference suppression. Furthermore, we explore promising applications of polarforming for next-generation wireless networks. Numerical case studies demonstrate the substantial performance gains of polarforming over conventional fixed-polarization antenna (FPA) systems, along with a discussion of implementation challenges to motivate future research.
Abstract:Large Audio-Language Models (LALMs) are increasingly deployed in real-world applications, yet their robustness against malicious audio injection attacks remains underexplored. This study systematically evaluates five leading LALMs across four attack scenarios: Audio Interference Attack, Instruction Following Attack, Context Injection Attack, and Judgment Hijacking Attack. Using metrics like Defense Success Rate, Context Robustness Score, and Judgment Robustness Index, their vulnerabilities and resilience were quantitatively assessed. Experimental results reveal significant performance disparities among models; no single model consistently outperforms others across all attack types. The position of malicious content critically influences attack effectiveness, particularly when placed at the beginning of sequences. A negative correlation between instruction-following capability and robustness suggests models adhering strictly to instructions may be more susceptible, contrasting with greater resistance by safety-aligned models. Additionally, system prompts show mixed effectiveness, indicating the need for tailored strategies. This work introduces a benchmark framework and highlights the importance of integrating robustness into training pipelines. Findings emphasize developing multi-modal defenses and architectural designs that decouple capability from susceptibility for secure LALMs deployment.