Fake Image Detection


Fake image detection is the process of identifying and detecting fake or manipulated images using deep learning techniques.

SFNet: Fusion of Spatial and Frequency-Domain Features for Remote Sensing Image Forgery Detection

Add code
Jun 25, 2025
Viaarxiv icon

TADA: Training-free Attribution and Out-of-Domain Detection of Audio Deepfakes

Add code
Jun 06, 2025
Viaarxiv icon

Adversarially Robust AI-Generated Image Detection for Free: An Information Theoretic Perspective

Add code
May 28, 2025
Viaarxiv icon

Practical Manipulation Model for Robust Deepfake Detection

Add code
Jun 05, 2025
Viaarxiv icon

Unleashing the Potential of Consistency Learning for Detecting and Grounding Multi-Modal Media Manipulation

Add code
Jun 06, 2025
Viaarxiv icon

So-Fake: Benchmarking and Explaining Social Media Image Forgery Detection

Add code
May 24, 2025
Viaarxiv icon

ForensicHub: A Unified Benchmark & Codebase for All-Domain Fake Image Detection and Localization

Add code
May 16, 2025
Viaarxiv icon

RSFAKE-1M: A Large-Scale Dataset for Detecting Diffusion-Generated Remote Sensing Forgeries

Add code
May 29, 2025
Viaarxiv icon

Multimodal Conditional Information Bottleneck for Generalizable AI-Generated Image Detection

Add code
May 21, 2025
Viaarxiv icon

FragFake: A Dataset for Fine-Grained Detection of Edited Images with Vision Language Models

Add code
May 21, 2025
Viaarxiv icon