Topic:Fake Image Detection
What is Fake Image Detection? Fake image detection is the process of identifying and detecting fake or manipulated images using deep learning techniques.
Papers and Code
Apr 29, 2025
Abstract:Recent advancements in AI-based multimedia generation have enabled the creation of hyper-realistic images and videos, raising concerns about their potential use in spreading misinformation. The widespread accessibility of generative techniques, which allow for the production of fake multimedia from prompts or existing media, along with their continuous refinement, underscores the urgent need for highly accurate and generalizable AI-generated media detection methods, underlined also by new regulations like the European Digital AI Act. In this paper, we draw inspiration from Vision Transformer (ViT)-based fake image detection and extend this idea to video. We propose an {original} %innovative framework that effectively integrates ViT embeddings over time to enhance detection performance. Our method shows promising accuracy, generalization, and few-shot learning capabilities across a new, large and diverse dataset of videos generated using five open source generative techniques from the state-of-the-art, as well as a separate dataset containing videos produced by proprietary generative methods.
Via

Apr 29, 2025
Abstract:AI-generated synthetic media are increasingly used in real-world scenarios, often with the purpose of spreading misinformation and propaganda through social media platforms, where compression and other processing can degrade fake detection cues. Currently, many forensic tools fail to account for these in-the-wild challenges. In this work, we introduce TrueFake, a large-scale benchmarking dataset of 600,000 images including top notch generative techniques and sharing via three different social networks. This dataset allows for rigorous evaluation of state-of-the-art fake image detectors under very realistic and challenging conditions. Through extensive experimentation, we analyze how social media sharing impacts detection performance, and identify current most effective detection and training strategies. Our findings highlight the need for evaluating forensic models in conditions that mirror real-world use.
Via

Apr 19, 2025
Abstract:Progress in image generation raises significant public security concerns. We argue that fake image detection should not operate as a "black box". Instead, an ideal approach must ensure both strong generalization and transparency. Recent progress in Multi-modal Large Language Models (MLLMs) offers new opportunities for reasoning-based AI-generated image detection. In this work, we evaluate the capabilities of MLLMs in comparison to traditional detection methods and human evaluators, highlighting their strengths and limitations. Furthermore, we design six distinct prompts and propose a framework that integrates these prompts to develop a more robust, explainable, and reasoning-driven detection system. The code is available at https://github.com/Gennadiyev/mllm-defake.
Via

Apr 16, 2025
Abstract:The rise of AI-generated image editing tools has made localized forgeries increasingly realistic, posing challenges for visual content integrity. Although recent efforts have explored localized AIGC detection, existing datasets predominantly focus on object-level forgeries while overlooking broader scene edits in regions such as sky or ground. To address these limitations, we introduce \textbf{BR-Gen}, a large-scale dataset of 150,000 locally forged images with diverse scene-aware annotations, which are based on semantic calibration to ensure high-quality samples. BR-Gen is constructed through a fully automated Perception-Creation-Evaluation pipeline to ensure semantic coherence and visual realism. In addition, we further propose \textbf{NFA-ViT}, a Noise-guided Forgery Amplification Vision Transformer that enhances the detection of localized forgeries by amplifying forgery-related features across the entire image. NFA-ViT mines heterogeneous regions in images, \emph{i.e.}, potential edited areas, by noise fingerprints. Subsequently, attention mechanism is introduced to compel the interaction between normal and abnormal features, thereby propagating the generalization traces throughout the entire image, allowing subtle forgeries to influence a broader context and improving overall detection robustness. Extensive experiments demonstrate that BR-Gen constructs entirely new scenarios that are not covered by existing methods. Take a step further, NFA-ViT outperforms existing methods on BR-Gen and generalizes well across current benchmarks. All data and codes are available at https://github.com/clpbc/BR-Gen.
Via

Apr 19, 2025
Abstract:Multimodal fake news detection plays a crucial role in combating online misinformation. Unfortunately, effective detection methods rely on annotated labels and encounter significant performance degradation when domain shifts exist between training (source) and test (target) data. To address the problems, we propose ADOSE, an Active Domain Adaptation (ADA) framework for multimodal fake news detection which actively annotates a small subset of target samples to improve detection performance. To identify various deceptive patterns in cross-domain settings, we design multiple expert classifiers to learn dependencies across different modalities. These classifiers specifically target the distinct deception patterns exhibited in fake news, where two unimodal classifiers capture knowledge errors within individual modalities while one cross-modal classifier identifies semantic inconsistencies between text and images. To reduce annotation costs from the target domain, we propose a least-disagree uncertainty selector with a diversity calculator for selecting the most informative samples. The selector leverages prediction disagreement before and after perturbations by multiple classifiers as an indicator of uncertain samples, whose deceptive patterns deviate most from source domains. It further incorporates diversity scores derived from multi-view features to ensure the chosen samples achieve maximal coverage of target domain features. The extensive experiments on multiple datasets show that ADOSE outperforms existing ADA methods by 2.72\% $\sim$ 14.02\%, indicating the superiority of our model.
Via

Apr 12, 2025
Abstract:The rapid growth of social media has led to the widespread dissemination of fake news across multiple content forms, including text, images, audio, and video. Compared to unimodal fake news detection, multimodal fake news detection benefits from the increased availability of information across multiple modalities. However, in the context of social media, certain modalities in multimodal fake news detection tasks may contain disruptive or over-expressive information. These elements often include exaggerated or embellished content. We define this phenomenon as modality disruption and explore its impact on detection models through experiments. To address the issue of modality disruption in a targeted manner, we propose a multimodal fake news detection framework, FND-MoE. Additionally, we design a two-pass feature selection mechanism to further mitigate the impact of modality disruption. Extensive experiments on the FakeSV and FVC-2018 datasets demonstrate that FND-MoE significantly outperforms state-of-the-art methods, with accuracy improvements of 3.45% and 3.71% on the respective datasets compared to baseline models.
Via

Apr 12, 2025
Abstract:The rapid growth of social media has led to the widespread dissemination of fake news across multiple content forms, including text, images, audio, and video. Traditional unimodal detection methods fall short in addressing complex cross-modal manipulations; as a result, multimodal fake news detection has emerged as a more effective solution. However, existing multimodal approaches, especially in the context of fake news detection on social media, often overlook the confounders hidden within complex cross-modal interactions, leading models to rely on spurious statistical correlations rather than genuine causal mechanisms. In this paper, we propose the Causal Intervention-based Multimodal Deconfounded Detection (CIMDD) framework, which systematically models three types of confounders via a unified Structural Causal Model (SCM): (1) Lexical Semantic Confounder (LSC); (2) Latent Visual Confounder (LVC); (3) Dynamic Cross-Modal Coupling Confounder (DCCC). To mitigate the influence of these confounders, we specifically design three causal modules based on backdoor adjustment, frontdoor adjustment, and cross-modal joint intervention to block spurious correlations from different perspectives and achieve causal disentanglement of representations for deconfounded reasoning. Experimental results on the FakeSV and FVC datasets demonstrate that CIMDD significantly improves detection accuracy, outperforming state-of-the-art methods by 4.27% and 4.80%, respectively. Furthermore, extensive experimental results indicate that CIMDD exhibits strong generalization and robustness across diverse multimodal scenarios.
Via

Apr 10, 2025
Abstract:In an increasingly digitalized world, verifying the authenticity of ID documents has become a critical challenge for real-life applications such as digital banking, crypto-exchanges, renting, etc. This study focuses on the topic of fake ID detection, covering several limitations in the field. In particular, no publicly available data from real ID documents exists, and most studies rely on proprietary in-house databases that are not available due to privacy reasons. In order to shed some light on this critical challenge that makes difficult to advance in the field, we explore a trade-off between privacy (i.e., amount of sensitive data available) and performance, proposing a novel patch-wise approach for privacy-preserving fake ID detection. Our proposed approach explores how privacy can be enhanced through: i) two levels of anonymization for an ID document (i.e., fully- and pseudo-anonymized), and ii) different patch size configurations, varying the amount of sensitive data visible in the patch image. Also, state-of-the-art methods such as Vision Transformers and Foundation Models are considered in the analysis. The experimental framework shows that, on an unseen database (DLC-2021), our proposal achieves 13.91% and 0% EERs at patch and ID document level, showing a good generalization to other databases. In addition to this exploration, another key contribution of our study is the release of the first publicly available database that contains 48,400 patches from both real and fake ID documents, along with the experimental framework and models, which will be available in our GitHub.
Via

Apr 02, 2025
Abstract:The threat that online fake news and misinformation pose to democracy, justice, public confidence, and especially to vulnerable populations, has led to a sharp increase in the need for fake news detection and intervention. Whether multi-modal or pure text-based, most fake news detection methods depend on textual analysis of entire articles. However, these fake news detection methods come with certain limitations. For instance, fake news detection methods that rely on full text can be computationally inefficient, demand large amounts of training data to achieve competitive accuracy, and may lack robustness across different datasets. This is because fake news datasets have strong variations in terms of the level and types of information they provide; where some can include large paragraphs of text with images and metadata, others can be a few short sentences. Perhaps if one could only use minimal information to detect fake news, fake news detection methods could become more robust and resilient to the lack of information. We aim to overcome these limitations by detecting fake news using systematically selected, limited information that is both effective and capable of delivering robust, promising performance. We propose a framework called SLIM Systematically-selected Limited Information) for fake news detection. In SLIM, we quantify the amount of information by introducing information-theoretic measures. SLIM leverages limited information to achieve performance in fake news detection comparable to that of state-of-the-art obtained using the full text. Furthermore, by combining various types of limited information, SLIM can perform even better while significantly reducing the quantity of information required for training compared to state-of-the-art language model-based fake news detection techniques.
Via

Apr 07, 2025
Abstract:Detecting deepfakes has been an increasingly important topic, especially given the rapid development of AI generation techniques. In this paper, we ask: How can we build a universal detection framework that is effective for most facial deepfakes? One significant challenge is the wide variety of deepfake generators available, resulting in varying forgery artifacts (e.g., lighting inconsistency, color mismatch, etc). But should we ``teach" the detector to learn all these artifacts separately? It is impossible and impractical to elaborate on them all. So the core idea is to pinpoint the more common and general artifacts across different deepfakes. Accordingly, we categorize deepfake artifacts into two distinct yet complementary types: Face Inconsistency Artifacts (FIA) and Up-Sampling Artifacts (USA). FIA arise from the challenge of generating all intricate details, inevitably causing inconsistencies between the complex facial features and relatively uniform surrounding areas. USA, on the other hand, are the inevitable traces left by the generator's decoder during the up-sampling process. This categorization stems from the observation that all existing deepfakes typically exhibit one or both of these artifacts. To achieve this, we propose a new data-level pseudo-fake creation framework that constructs fake samples with only the FIA and USA, without introducing extra less-general artifacts. Specifically, we employ a super-resolution to simulate the USA, while design a Blender module that uses image-level self-blending on diverse facial regions to create the FIA. We surprisingly found that, with this intuitive design, a standard image classifier trained only with our pseudo-fake data can non-trivially generalize well to unseen deepfakes.
Via
