Abstract:Embodied visual tracking is a fundamental skill in Embodied AI, enabling an agent to follow a specific target in dynamic environments using only egocentric vision. This task is inherently challenging as it requires both accurate target recognition and effective trajectory planning under conditions of severe occlusion and high scene dynamics. Existing approaches typically address this challenge through a modular separation of recognition and planning. In this work, we propose TrackVLA, a Vision-Language-Action (VLA) model that learns the synergy between object recognition and trajectory planning. Leveraging a shared LLM backbone, we employ a language modeling head for recognition and an anchor-based diffusion model for trajectory planning. To train TrackVLA, we construct an Embodied Visual Tracking Benchmark (EVT-Bench) and collect diverse difficulty levels of recognition samples, resulting in a dataset of 1.7 million samples. Through extensive experiments in both synthetic and real-world environments, TrackVLA demonstrates SOTA performance and strong generalizability. It significantly outperforms existing methods on public benchmarks in a zero-shot manner while remaining robust to high dynamics and occlusion in real-world scenarios at 10 FPS inference speed. Our project page is: https://pku-epic.github.io/TrackVLA-web.
Abstract:This paper delineates AISHELL-5, the first open-source in-car multi-channel multi-speaker Mandarin automatic speech recognition (ASR) dataset. AISHLL-5 includes two parts: (1) over 100 hours of multi-channel speech data recorded in an electric vehicle across more than 60 real driving scenarios. This audio data consists of four far-field speech signals captured by microphones located on each car door, as well as near-field signals obtained from high-fidelity headset microphones worn by each speaker. (2) a collection of 40 hours of real-world environmental noise recordings, which supports the in-car speech data simulation. Moreover, we also provide an open-access, reproducible baseline system based on this dataset. This system features a speech frontend model that employs speech source separation to extract each speaker's clean speech from the far-field signals, along with a speech recognition module that accurately transcribes the content of each individual speaker. Experimental results demonstrate the challenges faced by various mainstream ASR models when evaluated on the AISHELL-5. We firmly believe the AISHELL-5 dataset will significantly advance the research on ASR systems under complex driving scenarios by establishing the first publicly available in-car ASR benchmark.
Abstract:Rapid advances in Artificial Intelligence Generated Images (AIGI) have facilitated malicious use, such as forgery and misinformation. Therefore, numerous methods have been proposed to detect fake images. Although such detectors have been proven to be universally vulnerable to adversarial attacks, defenses in this field are scarce. In this paper, we first identify that adversarial training (AT), widely regarded as the most effective defense, suffers from performance collapse in AIGI detection. Through an information-theoretic lens, we further attribute the cause of collapse to feature entanglement, which disrupts the preservation of feature-label mutual information. Instead, standard detectors show clear feature separation. Motivated by this difference, we propose Training-free Robust Detection via Information-theoretic Measures (TRIM), the first training-free adversarial defense for AIGI detection. TRIM builds on standard detectors and quantifies feature shifts using prediction entropy and KL divergence. Extensive experiments across multiple datasets and attacks validate the superiority of our TRIM, e.g., outperforming the state-of-the-art defense by 33.88% (28.91%) on ProGAN (GenImage), while well maintaining original accuracy.
Abstract:Convolutional neural networks (CNNs) have become widely adopted in gravitational wave (GW) detection pipelines due to their ability to automatically learn hierarchical features from raw strain data. However, the physical meaning of these learned features remains underexplored, limiting the interpretability of such models. In this work, we propose a hybrid architecture that combines a CNN-based feature extractor with a random forest (RF) classifier to improve both detection performance and interpretability. Unlike prior approaches that directly connect classifiers to CNN outputs, our method introduces four physically interpretable metrics - variance, signal-to-noise ratio (SNR), waveform overlap, and peak amplitude - computed from the final convolutional layer. These are jointly used with the CNN output in the RF classifier to enable more informed decision boundaries. Tested on long-duration strain datasets, our hybrid model outperforms a baseline CNN model, achieving a relative improvement of 21\% in sensitivity at a fixed false alarm rate of 10 events per month. Notably, it also shows improved detection of low-SNR signals (SNR $\le$ 10), which are especially vulnerable to misclassification in noisy environments. Feature attribution via the RF model reveals that both CNN-extracted and handcrafted features contribute significantly to classification decisions, with learned variance and CNN outputs ranked among the most informative. These findings suggest that physically motivated post-processing of CNN feature maps can serve as a valuable tool for interpretable and efficient GW detection, bridging the gap between deep learning and domain knowledge.
Abstract:Joint Energy-based Models (JEMs), a class of hybrid generative-discriminative models, are well known for their ability to achieve both high classification accuracy and generative capability within a single model. However, their robustness still lags significantly behind the classifiers based adversarial training (AT). Conversely, while AT is currently the most effective approach to improving the classifier's robustness, it typically sacrifices accuracy on clean data and lacks generative capability. The triple trade-off between classification accuracy, generative capability and robustness, raises a natural question: Can a single model simultaneously achieve high classification accuracy, adversarial robustness, and generative performance? -- a goal that has been rarely explored. To address this question, we systematically analyze the energy distribution differences of clean, adversarial, and generated samples across various JEM variants and adversarially trained models. We observe that AT tends to reduce the energy gap between clean and adversarial samples, while JEMs reduce the gap between clean and synthetic ones. This observation suggests a key insight: if the energy distributions of all three data types can be aligned, we might unify the strengths of AT and JEMs, resolving their inherent trade-offs. Building on this idea, we propose Energy-based Joint Distribution Adversarial Training (EB-JDAT), to jointly model the clean data distribution, the adversarial distribution, and the classifier by maximizing their joint probability. EB-JDAT is a general and flexible optimization method, compatible with various JEM variants. Extensive experimental results demonstrate that EB-JDAT not only maintains near original accuracy and generative capability of JEMs, but also significantly enhances robustness, even surpassing state-of-the-art ATs.
Abstract:Crowd behaviour analysis is essential to numerous real-world applications, such as public safety and urban planning, and therefore has been studied for decades. In the last decade or so, the development of deep learning has significantly propelled the research on crowd behaviours. This chapter reviews recent advances in crowd behaviour analysis using deep learning. We mainly review the research in two core tasks in this field, crowd behaviour prediction and recognition. We broadly cover how different deep neural networks, after first being proposed in machine learning, are applied to analysing crowd behaviours. This includes pure deep neural network models as well as recent development of methodologies combining physics with deep learning. In addition, representative studies are discussed and compared in detail. Finally, we discuss the effectiveness of existing methods and future research directions in this rapidly evolving field. This chapter aims to provide a high-level summary of the ongoing deep learning research in crowd behaviour analysis. It intends to help new researchers who just entered this field to obtain an overall understanding of the ongoing research, as well as to provide a retrospective analysis for existing researchers to identify possible future directions
Abstract:Generating large-scale multi-character interactions is a challenging and important task in character animation. Multi-character interactions involve not only natural interactive motions but also characters coordinated with each other for transition. For example, a dance scenario involves characters dancing with partners and also characters coordinated to new partners based on spatial and temporal observations. We term such transitions as coordinated interactions and decompose them into interaction synthesis and transition planning. Previous methods of single-character animation do not consider interactions that are critical for multiple characters. Deep-learning-based interaction synthesis usually focuses on two characters and does not consider transition planning. Optimization-based interaction synthesis relies on manually designing objective functions that may not generalize well. While crowd simulation involves more characters, their interactions are sparse and passive. We identify two challenges to multi-character interaction synthesis, including the lack of data and the planning of transitions among close and dense interactions. Existing datasets either do not have multiple characters or do not have close and dense interactions. The planning of transitions for multi-character close and dense interactions needs both spatial and temporal considerations. We propose a conditional generative pipeline comprising a coordinatable multi-character interaction space for interaction synthesis and a transition planning network for coordinations. Our experiments demonstrate the effectiveness of our proposed pipeline for multicharacter interaction synthesis and the applications facilitated by our method show the scalability and transferability.
Abstract:Large language model (LLM) agents have shown promising performance in generating code for solving complex data science problems. Recent studies primarily focus on enhancing in-context learning through improved search, sampling, and planning techniques, while overlooking the importance of the order in which problems are tackled during inference. In this work, we develop a novel inference-time optimization framework, referred to as DSMentor, which leverages curriculum learning -- a strategy that introduces simpler task first and progressively moves to more complex ones as the learner improves -- to enhance LLM agent performance in challenging data science tasks. Our mentor-guided framework organizes data science tasks in order of increasing difficulty and incorporates a growing long-term memory to retain prior experiences, guiding the agent's learning progression and enabling more effective utilization of accumulated knowledge. We evaluate DSMentor through extensive experiments on DSEval and QRData benchmarks. Experiments show that DSMentor using Claude-3.5-Sonnet improves the pass rate by up to 5.2% on DSEval and QRData compared to baseline agents. Furthermore, DSMentor demonstrates stronger causal reasoning ability, improving the pass rate by 8.8% on the causality problems compared to GPT-4 using Program-of-Thoughts prompts. Our work underscores the importance of developing effective strategies for accumulating and utilizing knowledge during inference, mirroring the human learning process and opening new avenues for improving LLM performance through curriculum-based inference optimization.
Abstract:Hyperspectral and multispectral image (HSI-MSI) fusion involves combining a low-resolution hyperspectral image (LR-HSI) with a high-resolution multispectral image (HR-MSI) to generate a high-resolution hyperspectral image (HR-HSI). Most deep learning-based methods for HSI-MSI fusion rely on large amounts of hyperspectral data for supervised training, which is often scarce in practical applications. In this paper, we propose a self-learning Adaptive Residual Guided Subspace Diffusion Model (ARGS-Diff), which only utilizes the observed images without any extra training data. Specifically, as the LR-HSI contains spectral information and the HR-MSI contains spatial information, we design two lightweight spectral and spatial diffusion models to separately learn the spectral and spatial distributions from them. Then, we use these two models to reconstruct HR-HSI from two low-dimensional components, i.e, the spectral basis and the reduced coefficient, during the reverse diffusion process. Furthermore, we introduce an Adaptive Residual Guided Module (ARGM), which refines the two components through a residual guided function at each sampling step, thereby stabilizing the sampling process. Extensive experimental results demonstrate that ARGS-Diff outperforms existing state-of-the-art methods in terms of both performance and computational efficiency in the field of HSI-MSI fusion. Code is available at https://github.com/Zhu1116/ARGS-Diff.
Abstract:Humans possess a large reachable space in the 3D world, enabling interaction with objects at varying heights and distances. However, realizing such large-space reaching on humanoids is a complex whole-body control problem and requires the robot to master diverse skills simultaneously-including base positioning and reorientation, height and body posture adjustments, and end-effector pose control. Learning from scratch often leads to optimization difficulty and poor sim2real transferability. To address this challenge, we propose Real-world-Ready Skill Space (R2S2). Our approach begins with a carefully designed skill library consisting of real-world-ready primitive skills. We ensure optimal performance and robust sim2real transfer through individual skill tuning and sim2real evaluation. These skills are then ensembled into a unified latent space, serving as a structured prior that helps task execution in an efficient and sim2real transferable manner. A high-level planner, trained to sample skills from this space, enables the robot to accomplish real-world goal-reaching tasks. We demonstrate zero-shot sim2real transfer and validate R2S2 in multiple challenging goal-reaching scenarios.