In surgical procedures, correct instrument counting is essential. Instance segmentation is a location method that locates not only an object's bounding box but also each pixel's specific details. However, obtaining mask-level annotations is labor-intensive in instance segmentation. To address this issue, we propose a novel yet effective weakly-supervised surgical instrument instance segmentation approach, named Point-based Weakly-supervised Instance Segmentation (PWISeg). PWISeg adopts an FCN-based architecture with point-to-box and point-to-mask branches to model the relationships between feature points and bounding boxes, as well as feature points and segmentation masks on FPN, accomplishing instrument detection and segmentation jointly in a single model. Since mask level annotations are hard to available in the real world, for point-to-mask training, we introduce an unsupervised projection loss, utilizing the projected relation between predicted masks and bboxes as supervision signal. On the other hand, we annotate a few pixels as the key pixel for each instrument. Based on this, we further propose a key pixel association loss and a key pixel distribution loss, driving the point-to-mask branch to generate more accurate segmentation predictions. To comprehensively evaluate this task, we unveil a novel surgical instrument dataset with manual annotations, setting up a benchmark for further research. Our comprehensive research trial validated the superior performance of our PWISeg. The results show that the accuracy of surgical instrument segmentation is improved, surpassing most methods of instance segmentation via weakly supervised bounding boxes. This improvement is consistently observed in our proposed dataset and when applied to the public HOSPI-Tools dataset.
Simultaneously odometry and mapping using LiDAR data is an important task for mobile systems to achieve full autonomy in large-scale environments. However, most existing LiDAR-based methods prioritize tracking quality over reconstruction quality. Although the recently developed neural radiance fields (NeRF) have shown promising advances in implicit reconstruction for indoor environments, the problem of simultaneous odometry and mapping for large-scale scenarios using incremental LiDAR data remains unexplored. To bridge this gap, in this paper, we propose a novel NeRF-based LiDAR odometry and mapping approach, NeRF-LOAM, consisting of three modules neural odometry, neural mapping, and mesh reconstruction. All these modules utilize our proposed neural signed distance function, which separates LiDAR points into ground and non-ground points to reduce Z-axis drift, optimizes odometry and voxel embeddings concurrently, and in the end generates dense smooth mesh maps of the environment. Moreover, this joint optimization allows our NeRF-LOAM to be pre-trained free and exhibit strong generalization abilities when applied to different environments. Extensive evaluations on three publicly available datasets demonstrate that our approach achieves state-of-the-art odometry and mapping performance, as well as a strong generalization in large-scale environments utilizing LiDAR data. Furthermore, we perform multiple ablation studies to validate the effectiveness of our network design. The implementation of our approach will be made available at https://github.com/JunyuanDeng/NeRF-LOAM.
This paper proposes a novel simultaneous localization and mapping (SLAM) approach, namely Attention-SLAM, which simulates human navigation mode by combining a visual saliency model (SalNavNet) with traditional monocular visual SLAM. Most SLAM methods treat all the features extracted from the images as equal importance during the optimization process. However, the salient feature points in scenes have more significant influence during the human navigation process. Therefore, we first propose a visual saliency model called SalVavNet in which we introduce a correlation module and propose an adaptive Exponential Moving Average (EMA) module. These modules mitigate the center bias to enable the saliency maps generated by SalNavNet to pay more attention to the same salient object. Moreover, the saliency maps simulate the human behavior for the refinement of SLAM results. The feature points extracted from the salient regions have greater importance in optimization process. We add semantic saliency information to the Euroc dataset to generate an open-source saliency SLAM dataset. Comprehensive test results prove that Attention-SLAM outperforms benchmarks such as Direct Sparse Odometry (DSO), ORB-SLAM, and Salient DSO in terms of efficiency, accuracy, and robustness in most test cases.
Components of machine learning systems are not (yet) perceived as security hotspots. Secure coding practices, such as ensuring that no execution paths depend on confidential inputs, have not yet been adopted by ML developers. We initiate the study of code security of ML systems by investigating how nucleus sampling---a popular approach for generating text, used for applications such as auto-completion---unwittingly leaks texts typed by users. Our main result is that the series of nucleus sizes for many natural English word sequences is a unique fingerprint. We then show how an attacker can infer typed text by measuring these fingerprints via a suitable side channel (e.g., cache access times), explain how this attack could help de-anonymize anonymous texts, and discuss defenses.