Abstract:The rapid advancements in artificial intelligence have significantly accelerated the adoption of speech recognition technology, leading to its widespread integration across various applications. However, this surge in usage also highlights a critical issue: audio data is highly vulnerable to unauthorized exposure and analysis, posing significant privacy risks for businesses and individuals. This paper introduces an Information-Obfuscation Reversible Adversarial Example (IO-RAE) framework, the pioneering method designed to safeguard audio privacy using reversible adversarial examples. IO-RAE leverages large language models to generate misleading yet contextually coherent content, effectively preventing unauthorized eavesdropping by humans and Automatic Speech Recognition (ASR) systems. Additionally, we propose the Cumulative Signal Attack technique, which mitigates high-frequency noise and enhances attack efficacy by targeting low-frequency signals. Our approach ensures the protection of audio data without degrading its quality or our ability. Experimental evaluations demonstrate the superiority of our method, achieving a targeted misguidance rate of 96.5% and a remarkable 100% untargeted misguidance rate in obfuscating target keywords across multiple ASR models, including a commercial black-box system from Google. Furthermore, the quality of the recovered audio, measured by the Perceptual Evaluation of Speech Quality score, reached 4.45, comparable to high-quality original recordings. Notably, the recovered audio processed by ASR systems exhibited an error rate of 0%, indicating nearly lossless recovery. These results highlight the practical applicability and effectiveness of our IO-RAE framework in protecting sensitive audio privacy.




Abstract:Current diffusion-based portrait animation models predominantly focus on enhancing visual quality and expression realism, while overlooking generation latency and real-time performance, which restricts their application range in the live streaming scenario. We propose PersonaLive, a novel diffusion-based framework towards streaming real-time portrait animation with multi-stage training recipes. Specifically, we first adopt hybrid implicit signals, namely implicit facial representations and 3D implicit keypoints, to achieve expressive image-level motion control. Then, a fewer-step appearance distillation strategy is proposed to eliminate appearance redundancy in the denoising process, greatly improving inference efficiency. Finally, we introduce an autoregressive micro-chunk streaming generation paradigm equipped with a sliding training strategy and a historical keyframe mechanism to enable low-latency and stable long-term video generation. Extensive experiments demonstrate that PersonaLive achieves state-of-the-art performance with up to 7-22x speedup over prior diffusion-based portrait animation models.




Abstract:Despite their wide application, the vulnerabilities of deep neural networks raise societal concerns. Among them, transformation-based attacks have demonstrated notable success in transfer attacks. However, existing attacks suffer from blind spots in parameter optimization, limiting their full potential. Specifically, (1) prior work generally considers low-iteration settings, yet attacks perform quite differently at higher iterations, so characterizing overall performance based only on low-iteration results is misleading. (2) Existing attacks use uniform parameters for different surrogate models, iterations, and tasks, which greatly impairs transferability. (3) Traditional transformation parameter optimization relies on grid search. For n parameters with m steps each, the complexity is O(mn). Large computational overhead limits further optimization of parameters. To address these limitations, we conduct an empirical study with various transformations as baselines, revealing three dynamic patterns of transferability with respect to parameter strength. We further propose a novel Concentric Decay Model (CDM) to effectively explain these patterns. Building on these insights, we propose an efficient Dynamic Parameter Optimization (DPO) based on the rise-then-fall pattern, reducing the complexity to O(nlogm). Comprehensive experiments on existing transformation-based attacks across different surrogate models, iterations, and tasks demonstrate that our DPO can significantly improve transferability.




Abstract:This paper proposes an effective Gaussian management approach for high-fidelity object reconstruction. Departing from recent Gaussian Splatting (GS) methods that employ indiscriminate attribute assignment, our approach introduces a novel densification strategy that dynamically activates spherical harmonics (SHs) or normals under the supervision of a surface reconstruction module, which effectively mitigates the gradient conflicts caused by dual supervision and achieves superior reconstruction results. To further improve representation efficiency, we develop a lightweight Gaussian representation that adaptively adjusts the SH orders of each Gaussian based on gradient magnitudes and performs task-decoupled pruning to remove Gaussian with minimal impact on a reconstruction task without sacrificing others, which balances the representational capacity with parameter quantity. Notably, our management approach is model-agnostic and can be seamlessly integrated into other frameworks, enhancing performance while reducing model size. Extensive experiments demonstrate that our approach consistently outperforms state-of-the-art approaches in both reconstruction quality and efficiency, achieving superior performance with significantly fewer parameters.




Abstract:Recent learning-based underwater image enhancement (UIE) methods have advanced by incorporating physical priors into deep neural networks, particularly using the signal-to-noise ratio (SNR) prior to reduce wavelength-dependent attenuation. However, spatial domain SNR priors have two limitations: (i) they cannot effectively separate cross-channel interference, and (ii) they provide limited help in amplifying informative structures while suppressing noise. To overcome these, we propose using the SNR prior in the frequency domain, decomposing features into amplitude and phase spectra for better channel modulation. We introduce the Fourier Attention SNR-prior Transformer (FAST), combining spectral interactions with SNR cues to highlight key spectral components. Additionally, the Frequency Adaptive Transformer (FAT) bottleneck merges low- and high-frequency branches using a gated attention mechanism to enhance perceptual quality. Embedded in a unified U-shaped architecture, these modules integrate a conventional RGB stream with an SNR-guided branch, forming SFormer. Trained on 4,800 paired images from UIEB, EUVP, and LSUI, SFormer surpasses recent methods with a 3.1 dB gain in PSNR and 0.08 in SSIM, successfully restoring colors, textures, and contrast in underwater scenes.




Abstract:Murals, as invaluable cultural artifacts, face continuous deterioration from environmental factors and human activities. Digital restoration of murals faces unique challenges due to their complex degradation patterns and the critical need to preserve artistic authenticity. Existing learning-based methods struggle with maintaining consistent mask guidance throughout their networks, leading to insufficient focus on damaged regions and compromised restoration quality. We propose CMAMRNet, a Contextual Mask-Aware Mural Restoration Network that addresses these limitations through comprehensive mask guidance and multi-scale feature extraction. Our framework introduces two key components: (1) the Mask-Aware Up/Down-Sampler (MAUDS), which ensures consistent mask sensitivity across resolution scales through dedicated channel-wise feature selection and mask-guided feature fusion; and (2) the Co-Feature Aggregator (CFA), operating at both the highest and lowest resolutions to extract complementary features for capturing fine textures and global structures in degraded regions. Experimental results on benchmark datasets demonstrate that CMAMRNet outperforms state-of-the-art methods, effectively preserving both structural integrity and artistic details in restored murals. The code is available at~\href{https://github.com/CXH-Research/CMAMRNet}{https://github.com/CXH-Research/CMAMRNet}.
Abstract:Recently, prototype learning has emerged in semi-supervised medical image segmentation and achieved remarkable performance. However, the scarcity of labeled data limits the expressiveness of prototypes in previous methods, potentially hindering the complete representation of prototypes for class embedding. To overcome this issue, we propose an efficient prototype consistency learning via joint uncertainty quantification and data augmentation (EPCL-JUDA) to enhance the semantic expression of prototypes based on the framework of Mean-Teacher. The concatenation of original and augmented labeled data is fed into student network to generate expressive prototypes. Then, a joint uncertainty quantification method is devised to optimize pseudo-labels and generate reliable prototypes for original and augmented unlabeled data separately. High-quality global prototypes for each class are formed by fusing labeled and unlabeled prototypes, which are utilized to generate prototype-to-features to conduct consistency learning. Notably, a prototype network is proposed to reduce high memory requirements brought by the introduction of augmented data. Extensive experiments on Left Atrium, Pancreas-NIH, Type B Aortic Dissection datasets demonstrate EPCL-JUDA's superiority over previous state-of-the-art approaches, confirming the effectiveness of our framework. The code will be released soon.
Abstract:Existing semi-supervised medical segmentation co-learning frameworks have realized that model performance can be diminished by the biases in model recognition caused by low-quality pseudo-labels. Due to the averaging nature of their pseudo-label integration strategy, they fail to explore the reliability of pseudo-labels from different sources. In this paper, we propose a mutual evidential deep learning (MEDL) framework that offers a potentially viable solution for pseudo-label generation in semi-supervised learning from two perspectives. First, we introduce networks with different architectures to generate complementary evidence for unlabeled samples and adopt an improved class-aware evidential fusion to guide the confident synthesis of evidential predictions sourced from diverse architectural networks. Second, utilizing the uncertainty in the fused evidence, we design an asymptotic Fisher information-based evidential learning strategy. This strategy enables the model to initially focus on unlabeled samples with more reliable pseudo-labels, gradually shifting attention to samples with lower-quality pseudo-labels while avoiding over-penalization of mislabeled classes in high data uncertainty samples. Additionally, for labeled data, we continue to adopt an uncertainty-driven asymptotic learning strategy, gradually guiding the model to focus on challenging voxels. Extensive experiments on five mainstream datasets have demonstrated that MEDL achieves state-of-the-art performance.
Abstract:The field of Fake Image Detection and Localization (FIDL) is highly fragmented, encompassing four domains: deepfake detection (Deepfake), image manipulation detection and localization (IMDL), artificial intelligence-generated image detection (AIGC), and document image manipulation localization (Doc). Although individual benchmarks exist in some domains, a unified benchmark for all domains in FIDL remains blank. The absence of a unified benchmark results in significant domain silos, where each domain independently constructs its datasets, models, and evaluation protocols without interoperability, preventing cross-domain comparisons and hindering the development of the entire FIDL field. To close the domain silo barrier, we propose ForensicHub, the first unified benchmark & codebase for all-domain fake image detection and localization. Considering drastic variations on dataset, model, and evaluation configurations across all domains, as well as the scarcity of open-sourced baseline models and the lack of individual benchmarks in some domains, ForensicHub: i) proposes a modular and configuration-driven architecture that decomposes forensic pipelines into interchangeable components across datasets, transforms, models, and evaluators, allowing flexible composition across all domains; ii) fully implements 10 baseline models, 6 backbones, 2 new benchmarks for AIGC and Doc, and integrates 2 existing benchmarks of DeepfakeBench and IMDLBenCo through an adapter-based design; iii) conducts indepth analysis based on the ForensicHub, offering 8 key actionable insights into FIDL model architecture, dataset characteristics, and evaluation standards. ForensicHub represents a significant leap forward in breaking the domain silos in the FIDL field and inspiring future breakthroughs.




Abstract:Lensless imaging stands out as a promising alternative to conventional lens-based systems, particularly in scenarios demanding ultracompact form factors and cost-effective architectures. However, such systems are fundamentally governed by the Point Spread Function (PSF), which dictates how a point source contributes to the final captured signal. Traditional lensless techniques often require explicit calibrations and extensive pre-processing, relying on static or approximate PSF models. These rigid strategies can result in limited adaptability to real-world challenges, including noise, system imperfections, and dynamic scene variations, thus impeding high-fidelity reconstruction. In this paper, we propose LensNet, an end-to-end deep learning framework that integrates spatial-domain and frequency-domain representations in a unified pipeline. Central to our approach is a learnable Coded Mask Simulator (CMS) that enables dynamic, data-driven estimation of the PSF during training, effectively mitigating the shortcomings of fixed or sparsely calibrated kernels. By embedding a Wiener filtering component, LensNet refines global structure and restores fine-scale details, thus alleviating the dependency on multiple handcrafted pre-processing steps. Extensive experiments demonstrate LensNet's robust performance and superior reconstruction quality compared to state-of-the-art methods, particularly in preserving high-frequency details and attenuating noise. The proposed framework establishes a novel convergence between physics-based modeling and data-driven learning, paving the way for more accurate, flexible, and practical lensless imaging solutions for applications ranging from miniature sensors to medical diagnostics. The link of code is https://github.com/baijiesong/Lensnet.