Abstract:Out-of-distribution (OOD) detection in graphs is critical for ensuring model robustness in open-world and safety-sensitive applications. Existing approaches to graph OOD detection typically involve training an in-distribution (ID) classifier using only ID data, followed by the application of post-hoc OOD scoring techniques. Although OOD exposure - introducing auxiliary OOD samples during training - has proven to be an effective strategy for enhancing detection performance, current methods in the graph domain generally assume access to a set of real OOD nodes. This assumption, however, is often impractical due to the difficulty and cost of acquiring representative OOD samples. In this paper, we introduce GOE-LLM, a novel framework that leverages Large Language Models (LLMs) for OOD exposure in graph OOD detection without requiring real OOD nodes. GOE-LLM introduces two pipelines: (1) identifying pseudo-OOD nodes from the initially unlabeled graph using zero-shot LLM annotations, and (2) generating semantically informative synthetic OOD nodes via LLM-prompted text generation. These pseudo-OOD nodes are then used to regularize the training of the ID classifier for improved OOD awareness. We evaluate our approach across multiple benchmark datasets, showing that GOE-LLM significantly outperforms state-of-the-art graph OOD detection methods that do not use OOD exposure and achieves comparable performance to those relying on real OOD data.
Abstract:Out-of-distribution (OOD) detection is critical for ensuring the safety and reliability of machine learning systems, particularly in dynamic and open-world environments. In the vision and text domains, zero-shot OOD detection - which requires no training on in-distribution (ID) data - has made significant progress through the use of large-scale pretrained models such as vision-language models (VLMs) and large language models (LLMs). However, zero-shot OOD detection in graph-structured data remains largely unexplored, primarily due to the challenges posed by complex relational structures and the absence of powerful, large-scale pretrained models for graphs. In this work, we take the first step toward enabling zero-shot graph OOD detection by leveraging a graph foundation model (GFM). We show that, when provided only with class label names, the GFM can perform OOD detection without any node-level supervision - outperforming existing supervised methods across multiple datasets. To address the more practical setting where OOD label names are unavailable, we introduce GLIP-OOD, a novel framework that employs LLMs to generate semantically informative pseudo-OOD labels from unlabeled data. These labels enable the GFM to capture nuanced semantic boundaries between ID and OOD classes and perform fine-grained OOD detection - without requiring any labeled nodes. Our approach is the first to enable node-level graph OOD detection in a fully zero-shot setting, and achieves state-of-the-art performance on four benchmark text-attributed graph datasets.
Abstract:This paper presents an overview of NTIRE 2025 the First Challenge on Event-Based Image Deblurring, detailing the proposed methodologies and corresponding results. The primary goal of the challenge is to design an event-based method that achieves high-quality image deblurring, with performance quantitatively assessed using Peak Signal-to-Noise Ratio (PSNR). Notably, there are no restrictions on computational complexity or model size. The task focuses on leveraging both events and images as inputs for single-image deblurring. A total of 199 participants registered, among whom 15 teams successfully submitted valid results, offering valuable insights into the current state of event-based image deblurring. We anticipate that this challenge will drive further advancements in event-based vision research.
Abstract:Long video understanding is a complex task that requires both spatial detail and temporal awareness. While Vision-Language Models (VLMs) obtain frame-level understanding capabilities through multi-frame input, they suffer from information loss due to the sparse sampling strategy. In contrast, Video Large Language Models (Video-LLMs) capture temporal relationships within visual features but are limited by the scarcity of high-quality video-text datasets. To transfer long video understanding capabilities to VLMs with minimal data and computational cost, we propose Lightweight Video Compression (LVC), a novel method featuring the Query-Attention Video Compression mechanism, which effectively tackles the sparse sampling problem in VLMs. By training only the alignment layer with 10k short video-text pairs, LVC significantly enhances the temporal reasoning abilities of VLMs. Extensive experiments show that LVC provides consistent performance improvements across various models, including the InternVL2 series and Phi-3.5-Vision. Notably, the InternVL2-40B-LVC achieves scores of 68.2 and 65.9 on the long video understanding benchmarks MLVU and Video-MME, respectively, with relative improvements of 14.6% and 7.7%. The enhanced models and code will be publicly available soon.
Abstract:Reconstructing 3D scenes from monocular surgical videos can enhance surgeon's perception and therefore plays a vital role in various computer-assisted surgery tasks. However, achieving scale-consistent reconstruction remains an open challenge due to inherent issues in endoscopic videos, such as dynamic deformations and textureless surfaces. Despite recent advances, current methods either rely on calibration or instrument priors to estimate scale, or employ SfM-like multi-stage pipelines, leading to error accumulation and requiring offline optimization. In this paper, we present Endo3R, a unified 3D foundation model for online scale-consistent reconstruction from monocular surgical video, without any priors or extra optimization. Our model unifies the tasks by predicting globally aligned pointmaps, scale-consistent video depths, and camera parameters without any offline optimization. The core contribution of our method is expanding the capability of the recent pairwise reconstruction model to long-term incremental dynamic reconstruction by an uncertainty-aware dual memory mechanism. The mechanism maintains history tokens of both short-term dynamics and long-term spatial consistency. Notably, to tackle the highly dynamic nature of surgical scenes, we measure the uncertainty of tokens via Sampson distance and filter out tokens with high uncertainty. Regarding the scarcity of endoscopic datasets with ground-truth depth and camera poses, we further devise a self-supervised mechanism with a novel dynamics-aware flow loss. Abundant experiments on SCARED and Hamlyn datasets demonstrate our superior performance in zero-shot surgical video depth prediction and camera pose estimation with online efficiency. Project page: https://wrld.github.io/Endo3R/.
Abstract:Existing methods for graph out-of-distribution (OOD) detection typically depend on training graph neural network (GNN) classifiers using a substantial amount of labeled in-distribution (ID) data. However, acquiring high-quality labeled nodes in text-attributed graphs (TAGs) is challenging and costly due to their complex textual and structural characteristics. Large language models (LLMs), known for their powerful zero-shot capabilities in textual tasks, show promise but struggle to naturally capture the critical structural information inherent to TAGs, limiting their direct effectiveness. To address these challenges, we propose LLM-GOOD, a general framework that effectively combines the strengths of LLMs and GNNs to enhance data efficiency in graph OOD detection. Specifically, we first leverage LLMs' strong zero-shot capabilities to filter out likely OOD nodes, significantly reducing the human annotation burden. To minimize the usage and cost of the LLM, we employ it only to annotate a small subset of unlabeled nodes. We then train a lightweight GNN filter using these noisy labels, enabling efficient predictions of ID status for all other unlabeled nodes by leveraging both textual and structural information. After obtaining node embeddings from the GNN filter, we can apply informativeness-based methods to select the most valuable nodes for precise human annotation. Finally, we train the target ID classifier using these accurately annotated ID nodes. Extensive experiments on four real-world TAG datasets demonstrate that LLM-GOOD significantly reduces human annotation costs and outperforms state-of-the-art baselines in terms of both ID classification accuracy and OOD detection performance.
Abstract:With the success of autoregressive learning in large language models, it has become a dominant approach for text-to-image generation, offering high efficiency and visual quality. However, invisible watermarking for visual autoregressive (VAR) models remains underexplored, despite its importance in misuse prevention. Existing watermarking methods, designed for diffusion models, often struggle to adapt to the sequential nature of VAR models. To bridge this gap, we propose Safe-VAR, the first watermarking framework specifically designed for autoregressive text-to-image generation. Our study reveals that the timing of watermark injection significantly impacts generation quality, and watermarks of different complexities exhibit varying optimal injection times. Motivated by this observation, we propose an Adaptive Scale Interaction Module, which dynamically determines the optimal watermark embedding strategy based on the watermark information and the visual characteristics of the generated image. This ensures watermark robustness while minimizing its impact on image quality. Furthermore, we introduce a Cross-Scale Fusion mechanism, which integrates mixture of both heads and experts to effectively fuse multi-resolution features and handle complex interactions between image content and watermark patterns. Experimental results demonstrate that Safe-VAR achieves state-of-the-art performance, significantly surpassing existing counterparts regarding image quality, watermarking fidelity, and robustness against perturbations. Moreover, our method exhibits strong generalization to an out-of-domain watermark dataset QR Codes.
Abstract:Generating reasonable and high-quality human interactive motions in a given dynamic environment is crucial for understanding, modeling, transferring, and applying human behaviors to both virtual and physical robots. In this paper, we introduce an effective method, SemGeoMo, for dynamic contextual human motion generation, which fully leverages the text-affordance-joint multi-level semantic and geometric guidance in the generation process, improving the semantic rationality and geometric correctness of generative motions. Our method achieves state-of-the-art performance on three datasets and demonstrates superior generalization capability for diverse interaction scenarios. The project page and code can be found at https://4dvlab.github.io/project_page/semgeomo/.
Abstract:We introduce a novel class of regularization functions, called Cauchy-Schwarz (CS) regularizers, which can be designed to induce a wide range of properties in solution vectors of optimization problems. To demonstrate the versatility of CS regularizers, we derive regularization functions that promote discrete-valued vectors, eigenvectors of a given matrix, and orthogonal matrices. The resulting CS regularizers are simple, differentiable, and can be free of spurious stationary points, making them suitable for gradient-based solvers and large-scale optimization problems. In addition, CS regularizers automatically adapt to the appropriate scale, which is, for example, beneficial when discretizing the weights of neural networks. To demonstrate the efficacy of CS regularizers, we provide results for solving underdetermined systems of linear equations and weight quantization in neural networks. Furthermore, we discuss specializations, variations, and generalizations, which lead to an even broader class of new and possibly more powerful regularizers.
Abstract:The task of automatically coding the International Classification of Diseases (ICD) in the medical field has been well-established and has received much attention. Automatic coding of the ICD in the medical field has been successful in English but faces challenges when dealing with Chinese electronic medical records (EMRs). The first issue lies in the difficulty of extracting disease code-related information from Chinese EMRs, primarily due to the concise writing style and specific internal structure of the EMRs. The second problem is that previous methods have failed to leverage the disease-based multi-axial knowledge and lack of association with the corresponding clinical evidence. This paper introduces a novel framework called MKE-Coder: Multi-axial Knowledge with Evidence verification in ICD coding for Chinese EMRs. Initially, we identify candidate codes for the diagnosis and categorize each of them into knowledge under four coding axes.Subsequently, we retrieve corresponding clinical evidence from the comprehensive content of EMRs and filter credible evidence through a scoring model. Finally, to ensure the validity of the candidate code, we propose an inference module based on the masked language modeling strategy. This module verifies that all the axis knowledge associated with the candidate code is supported by evidence and provides recommendations accordingly. To evaluate the performance of our framework, we conduct experiments using a large-scale Chinese EMR dataset collected from various hospitals. The experimental results demonstrate that MKE-Coder exhibits significant superiority in the task of automatic ICD coding based on Chinese EMRs. In the practical evaluation of our method within simulated real coding scenarios, it has been demonstrated that our approach significantly aids coders in enhancing both their coding accuracy and speed.