Abstract:Large Language Model (LLM) services exhibit impressive capability on unlearned tasks leveraging only a few examples by in-context learning (ICL). However, the success of ICL varies depending on the task and context, leading to heterogeneous service quality. Directly estimating the performance of LLM services at each invocation can be laborious, especially requiring abundant labeled data or internal information within the LLM. This paper introduces a novel method to estimate the performance of LLM services across different tasks and contexts, which can be "plug-and-play" utilizing only a few unlabeled samples like ICL. Our findings suggest that the negative log-likelihood and perplexity derived from LLM service invocation can function as effective and significant features. Based on these features, we utilize four distinct meta-models to estimate the performance of LLM services. Our proposed method is compared against unlabeled estimation baselines across multiple LLM services and tasks. And it is experimentally applied to two scenarios, demonstrating its effectiveness in the selection and further optimization of LLM services.
Abstract:Dynamic Graph Neural Networks (DyGNNs) have garnered increasing research attention for learning representations on evolving graphs. Despite their effectiveness, the limited expressive power of existing DyGNNs hinders them from capturing important evolving patterns of dynamic graphs. Although some works attempt to enhance expressive capability with heuristic features, there remains a lack of DyGNN frameworks with provable and quantifiable high-order expressive power. To address this research gap, we firstly propose the k-dimensional Dynamic WL tests (k-DWL) as the referencing algorithms to quantify the expressive power of DyGNNs. We demonstrate that the expressive power of existing DyGNNs is upper bounded by the 1-DWL test. To enhance the expressive power, we propose Dynamic Graph Neural Network with High-order expressive power (HopeDGN), which updates the representation of central node pair by aggregating the interaction history with neighboring node pairs. Our theoretical results demonstrate that HopeDGN can achieve expressive power equivalent to the 2-DWL test. We then present a Transformer-based implementation for the local variant of HopeDGN. Experimental results show that HopeDGN achieved performance improvements of up to 3.12%, demonstrating the effectiveness of HopeDGN.
Abstract:Diffusion-based generative models have demonstrated their powerful performance across various tasks, but this comes at a cost of the slow sampling speed. To achieve both efficient and high-quality synthesis, various distillation-based accelerated sampling methods have been developed recently. However, they generally require time-consuming fine tuning with elaborate designs to achieve satisfactory performance in a specific number of function evaluation (NFE), making them difficult to employ in practice. To address this issue, we propose Simple and Fast Distillation (SFD) of diffusion models, which simplifies the paradigm used in existing methods and largely shortens their fine-tuning time up to 1000$\times$. We begin with a vanilla distillation-based sampling method and boost its performance to state of the art by identifying and addressing several small yet vital factors affecting the synthesis efficiency and quality. Our method can also achieve sampling with variable NFEs using a single distilled model. Extensive experiments demonstrate that SFD strikes a good balance between the sample quality and fine-tuning costs in few-step image generation task. For example, SFD achieves 4.53 FID (NFE=2) on CIFAR-10 with only 0.64 hours of fine-tuning on a single NVIDIA A100 GPU. Our code is available at https://github.com/zju-pi/diff-sampler.
Abstract:Conditional image synthesis based on user-specified requirements is a key component in creating complex visual content. In recent years, diffusion-based generative modeling has become a highly effective way for conditional image synthesis, leading to exponential growth in the literature. However, the complexity of diffusion-based modeling, the wide range of image synthesis tasks, and the diversity of conditioning mechanisms present significant challenges for researchers to keep up with rapid developments and understand the core concepts on this topic. In this survey, we categorize existing works based on how conditions are integrated into the two fundamental components of diffusion-based modeling, i.e., the denoising network and the sampling process. We specifically highlight the underlying principles, advantages, and potential challenges of various conditioning approaches in the training, re-purposing, and specialization stages to construct a desired denoising network. We also summarize six mainstream conditioning mechanisms in the essential sampling process. All discussions are centered around popular applications. Finally, we pinpoint some critical yet still open problems to be solved in the future and suggest some possible solutions. Our reviewed works are itemized at https://github.com/zju-pi/Awesome-Conditional-Diffusion-Models.
Abstract:Generating and inserting new objects into 3D content is a compelling approach for achieving versatile scene recreation. Existing methods, which rely on SDS optimization or single-view inpainting, often struggle to produce high-quality results. To address this, we propose a novel method for object insertion in 3D content represented by Gaussian Splatting. Our approach introduces a multi-view diffusion model, dubbed MVInpainter, which is built upon a pre-trained stable video diffusion model to facilitate view-consistent object inpainting. Within MVInpainter, we incorporate a ControlNet-based conditional injection module to enable controlled and more predictable multi-view generation. After generating the multi-view inpainted results, we further propose a mask-aware 3D reconstruction technique to refine Gaussian Splatting reconstruction from these sparse inpainted views. By leveraging these fabricate techniques, our approach yields diverse results, ensures view-consistent and harmonious insertions, and produces better object quality. Extensive experiments demonstrate that our approach outperforms existing methods.
Abstract:Sequential recommendation systems fundamentally rely on users' historical interaction sequences, which are often contaminated by noisy interactions. Identifying these noisy interactions accurately without additional information is particularly difficult due to the lack of explicit supervisory signals to denote noise. Large Language Models (LLMs), equipped with extensive open knowledge and semantic reasoning abilities, present a promising avenue to bridge this information gap. However, employing LLMs for denoising in sequential recommendation introduces notable challenges: 1) Direct application of pretrained LLMs may not be competent for the denoising task, frequently generating nonsensical responses; 2) Even after fine-tuning, the reliability of LLM outputs remains questionable, especially given the complexity of the task and th inherent hallucinatory issue of LLMs. To tackle these challenges, we propose LLM4DSR, a tailored approach for denoising sequential recommendation using LLMs. We constructed a self-supervised fine-tuning task to activate LLMs' capabilities to identify noisy items and suggest replacements. Furthermore, we developed an uncertainty estimation module that ensures only high-confidence responses are utilized for sequence corrections. Remarkably, LLM4DSR is model-agnostic, allowing the corrected sequences to be flexibly applied across various recommendation models. Extensive experiments validate the superiority of LLM4DSR over existing methods across three datasets and three recommendation backbones.
Abstract:Recent research on knowledge distillation has increasingly focused on logit distillation because of its simplicity, effectiveness, and versatility in model compression. In this paper, we introduce Refined Logit Distillation (RLD) to address the limitations of current logit distillation methods. Our approach is motivated by the observation that even high-performing teacher models can make incorrect predictions, creating a conflict between the standard distillation loss and the cross-entropy loss. This conflict can undermine the consistency of the student model's learning objectives. Previous attempts to use labels to empirically correct teacher predictions may undermine the class correlation. In contrast, our RLD employs labeling information to dynamically refine teacher logits. In this way, our method can effectively eliminate misleading information from the teacher while preserving crucial class correlations, thus enhancing the value and efficiency of distilled knowledge. Experimental results on CIFAR-100 and ImageNet demonstrate its superiority over existing methods. The code is provided at \text{https://github.com/zju-SWJ/RLD}.
Abstract:Automatic furniture layout is long desired for convenient interior design. Leveraging the remarkable visual reasoning capabilities of multimodal large language models (MLLMs), recent methods address layout generation in a static manner, lacking the feedback-driven refinement essential for interactive user engagement. We introduce Chat2Layout, a novel interactive furniture layout generation system that extends the functionality of MLLMs into the realm of interactive layout design. To achieve this, we establish a unified vision-question paradigm for in-context learning, enabling seamless communication with MLLMs to steer their behavior without altering model weights. Within this framework, we present a novel training-free visual prompting mechanism. This involves a visual-text prompting technique that assist MLLMs in reasoning about plausible layout plans, followed by an Offline-to-Online search (O2O-Search) method, which automatically identifies the minimal set of informative references to provide exemplars for visual-text prompting. By employing an agent system with MLLMs as the core controller, we enable bidirectional interaction. The agent not only comprehends the 3D environment and user requirements through linguistic and visual perception but also plans tasks and reasons about actions to generate and arrange furniture within the virtual space. Furthermore, the agent iteratively updates based on visual feedback from execution results. Experimental results demonstrate that our approach facilitates language-interactive generation and arrangement for diverse and complex 3D furniture.
Abstract:Learning effective representations for Continuous-Time Dynamic Graphs (CTDGs) has garnered significant research interest, largely due to its powerful capabilities in modeling complex interactions between nodes. A fundamental and crucial requirement for representation learning in CTDGs is the appropriate estimation and preservation of proximity. However, due to the sparse and evolving characteristics of CTDGs, the spatial-temporal properties inherent in high-order proximity remain largely unexplored. Despite its importance, this property presents significant challenges due to the computationally intensive nature of personalized interaction intensity estimation and the dynamic attributes of CTDGs. To this end, we propose a novel Correlated Spatial-Temporal Positional encoding that incorporates a parameter-free personalized interaction intensity estimation under the weak assumption of the Poisson Point Process. Building on this, we introduce the Dynamic Graph Transformer with \Correlated Spatial-Temporal Positional Encoding (CorDGT), which efficiently retains the evolving spatial-temporal high-order proximity for effective node representation learning in CTDGs. Extensive experiments on seven small and two large-scale datasets demonstrate the superior performance and scalability of the proposed CorDGT.
Abstract:To mitigate the suboptimal nature of graph structure, Graph Structure Learning (GSL) has emerged as a promising approach to improve graph structure and boost performance in downstream tasks. Despite the proposal of numerous GSL methods, the progresses in this field mostly concentrated on node-level tasks, while graph-level tasks (e.g., graph classification) remain largely unexplored. Notably, applying node-level GSL to graph classification is non-trivial due to the lack of find-grained guidance for intricate structure learning. Inspired by the vital role of subgraph in graph classification, in this paper we explore the potential of subgraph structure learning for graph classification by tackling the challenges of key subgraph selection and structure optimization. We propose a novel Motif-driven Subgraph Structure Learning method for Graph Classification (MOSGSL). Specifically, MOSGSL incorporates a subgraph structure learning module which can adaptively select important subgraphs. A motif-driven structure guidance module is further introduced to capture key subgraph-level structural patterns (motifs) and facilitate personalized structure learning. Extensive experiments demonstrate a significant and consistent improvement over baselines, as well as its flexibility and generalizability for various backbones and learning procedures.