Alert button
Picture for Dakuo Wang

Dakuo Wang

Alert button

Human Still Wins over LLM: An Empirical Study of Active Learning on Domain-Specific Annotation Tasks

Nov 16, 2023
Yuxuan Lu, Bingsheng Yao, Shao Zhang, Yun Wang, Peng Zhang, Tun Lu, Toby Jia-Jun Li, Dakuo Wang

Large Language Models (LLMs) have demonstrated considerable advances, and several claims have been made about their exceeding human performance. However, in real-world tasks, domain knowledge is often required. Low-resource learning methods like Active Learning (AL) have been proposed to tackle the cost of domain expert annotation, raising this question: Can LLMs surpass compact models trained with expert annotations in domain-specific tasks? In this work, we conduct an empirical experiment on four datasets from three different domains comparing SOTA LLMs with small models trained on expert annotations with AL. We found that small models can outperform GPT-3.5 with a few hundreds of labeled data, and they achieve higher or similar performance with GPT-4 despite that they are hundreds time smaller. Based on these findings, we posit that LLM predictions can be used as a warmup method in real-world applications and human experts remain indispensable in tasks involving data annotation driven by domain-specific knowledge.

Viaarxiv icon

More Samples or More Prompt Inputs? Exploring Effective In-Context Sampling for LLM Few-Shot Prompt Engineering

Nov 16, 2023
Bingsheng Yao, Guiming Chen, Ruishi Zou, Yuxuan Lu, Jiachen Li, Shao Zhang, Sijia Liu, James Hendler, Dakuo Wang

While most existing works on LLM prompt-engineering focus only on how to select a better set of data samples inside one single prompt input (In-Context Learning or ICL), why can't we design and leverage multiple prompt inputs together to further improve the LLM performance? In this work, we propose In-Context Sampling (ICS), a low-resource LLM prompt-engineering technique to produce the most confident prediction results by optimizing the construction of multiple ICL prompt inputs. Extensive experiments with two SOTA LLMs (FlanT5-XL and Mistral-7B) on three NLI datasets (e-SNLI, Multi-NLI, and ANLI) illustrate that ICS can consistently enhance LLM's prediction performance and confidence. An ablation study suggests that a diversity-based ICS strategy may further improve LLM's performance, which sheds light on a new yet promising future research direction.

Viaarxiv icon

FairytaleCQA: Integrating a Commonsense Knowledge Graph into Children's Storybook Narratives

Nov 16, 2023
Jiaju Chen, Yuxuan Lu, Shao Zhang, Bingsheng Yao, Yuanzhe Dong, Ying Xu, Yunyao Li, Qianwen Wang, Dakuo Wang, Yuling Sun

AI models (including LLM) often rely on narrative question-answering (QA) datasets to provide customized QA functionalities to support downstream children education applications; however, existing datasets only include QA pairs that are grounded within the given storybook content, but children can learn more when teachers refer the storybook content to real-world knowledge (e.g., commonsense knowledge). We introduce the FairytaleCQA dataset, which is annotated by children education experts, to supplement 278 storybook narratives with educationally appropriate commonsense knowledge. The dataset has 5,868 QA pairs that not only originate from the storybook narrative but also contain the commonsense knowledge grounded by an external knowledge graph (i.e., ConceptNet). A follow-up experiment shows that a smaller model (T5-large) fine-tuned with FairytaleCQA reliably outperforms much larger prompt-engineered LLM (e.g., GPT-4) in this new QA-pair generation task (QAG). This result suggests that: 1) our dataset brings novel challenges to existing LLMs, and 2) human experts' data annotation are still critical as they have much nuanced knowledge that LLMs do not know in the children educational domain.

Viaarxiv icon

Bergeron: Combating Adversarial Attacks through a Conscience-Based Alignment Framework

Nov 16, 2023
Matthew Pisano, Peter Ly, Abraham Sanders, Bingsheng Yao, Dakuo Wang, Tomek Strzalkowski, Mei Si

Modern Large language models (LLMs) can still generate responses that may not be aligned with human expectations or values. While many weight-based alignment methods have been proposed, many of them still leave models vulnerable to attacks when used on their own. To help mitigate this issue, we introduce Bergeron, a framework designed to improve the robustness of LLMs against adversarial attacks. Bergeron employs a two-tiered architecture. Here, a secondary LLM serves as a simulated conscience that safeguards a primary LLM. We do this by monitoring for and correcting potentially harmful text within both the prompt inputs and the generated outputs of the primary LLM. Empirical evaluation shows that Bergeron can improve the alignment and robustness of several popular LLMs without costly fine-tuning. It aids both open-source and black-box LLMs by complementing and reinforcing their existing alignment training.

Viaarxiv icon

Is a Seat at the Table Enough? Engaging Teachers and Students in Dataset Specification for ML in Education

Nov 09, 2023
Mei Tan, Hansol Lee, Dakuo Wang, Hariharan Subramonyam

Despite the promises of ML in education, its adoption in the classroom has surfaced numerous issues regarding fairness, accountability, and transparency, as well as concerns about data privacy and student consent. A root cause of these issues is the lack of understanding of the complex dynamics of education, including teacher-student interactions, collaborative learning, and classroom environment. To overcome these challenges and fully utilize the potential of ML in education, software practitioners need to work closely with educators and students to fully understand the context of the data (the backbone of ML applications) and collaboratively define the ML data specifications. To gain a deeper understanding of such a collaborative process, we conduct ten co-design sessions with ML software practitioners, educators, and students. In the sessions, teachers and students work with ML engineers, UX designers, and legal practitioners to define dataset characteristics for a given ML application. We find that stakeholders contextualize data based on their domain and procedural knowledge, proactively design data requirements to mitigate downstream harms and data reliability concerns, and exhibit role-based collaborative strategies and contribution patterns. Further, we find that beyond a seat at the table, meaningful stakeholder participation in ML requires structured supports: defined processes for continuous iteration and co-evaluation, shared contextual data quality standards, and information scaffolds for both technical and non-technical stakeholders to traverse expertise boundaries.

Viaarxiv icon

'Don't Get Too Technical with Me': A Discourse Structure-Based Framework for Science Journalism

Oct 23, 2023
Ronald Cardenas, Bingsheng Yao, Dakuo Wang, Yufang Hou

Science journalism refers to the task of reporting technical findings of a scientific paper as a less technical news article to the general public audience. We aim to design an automated system to support this real-world task (i.e., automatic science journalism) by 1) introducing a newly-constructed and real-world dataset (SciTechNews), with tuples of a publicly-available scientific paper, its corresponding news article, and an expert-written short summary snippet; 2) proposing a novel technical framework that integrates a paper's discourse structure with its metadata to guide generation; and, 3) demonstrating with extensive automatic and human experiments that our framework outperforms other baseline methods (e.g. Alpaca and ChatGPT) in elaborating a content plan meaningful for the target audience, simplifying the information selected, and producing a coherent final report in a layman's style.

* Accepted to EMNLP 2023 
Viaarxiv icon

Will the Prince Get True Love's Kiss? On the Model Sensitivity to Gender Perturbation over Fairytale Texts

Oct 16, 2023
Christina Chance, Da Yin, Dakuo Wang, Kai-Wei Chang

Recent studies show that traditional fairytales are rife with harmful gender biases. To help mitigate these gender biases in fairytales, this work aims to assess learned biases of language models by evaluating their robustness against gender perturbations. Specifically, we focus on Question Answering (QA) tasks in fairytales. Using counterfactual data augmentation to the FairytaleQA dataset, we evaluate model robustness against swapped gender character information, and then mitigate learned biases by introducing counterfactual gender stereotypes during training time. We additionally introduce a novel approach that utilizes the massive vocabulary of language models to support text genres beyond fairytales. Our experimental results suggest that models are sensitive to gender perturbations, with significant performance drops compared to the original testing set. However, when first fine-tuned on a counterfactual training dataset, models are less sensitive to the later introduced anti-gender stereotyped text.

Viaarxiv icon

Talk2Care: Facilitating Asynchronous Patient-Provider Communication with Large-Language-Model

Sep 22, 2023
Ziqi Yang, Xuhai Xu, Bingsheng Yao, Shao Zhang, Ethan Rogers, Stephen Intille, Nawar Shara, Guodong Gordon Gao, Dakuo Wang

Figure 1 for Talk2Care: Facilitating Asynchronous Patient-Provider Communication with Large-Language-Model
Figure 2 for Talk2Care: Facilitating Asynchronous Patient-Provider Communication with Large-Language-Model
Figure 3 for Talk2Care: Facilitating Asynchronous Patient-Provider Communication with Large-Language-Model
Figure 4 for Talk2Care: Facilitating Asynchronous Patient-Provider Communication with Large-Language-Model

Despite the plethora of telehealth applications to assist home-based older adults and healthcare providers, basic messaging and phone calls are still the most common communication methods, which suffer from limited availability, information loss, and process inefficiencies. One promising solution to facilitate patient-provider communication is to leverage large language models (LLMs) with their powerful natural conversation and summarization capability. However, there is a limited understanding of LLMs' role during the communication. We first conducted two interview studies with both older adults (N=10) and healthcare providers (N=9) to understand their needs and opportunities for LLMs in patient-provider asynchronous communication. Based on the insights, we built an LLM-powered communication system, Talk2Care, and designed interactive components for both groups: (1) For older adults, we leveraged the convenience and accessibility of voice assistants (VAs) and built an LLM-powered VA interface for effective information collection. (2) For health providers, we built an LLM-based dashboard to summarize and present important health information based on older adults' conversations with the VA. We further conducted two user studies with older adults and providers to evaluate the usability of the system. The results showed that Talk2Care could facilitate the communication process, enrich the health information collected from older adults, and considerably save providers' efforts and time. We envision our work as an initial exploration of LLMs' capability in the intersection of healthcare and interpersonal communication.

* Under submission to CHI2024 
Viaarxiv icon

"It's a Fair Game'', or Is It? Examining How Users Navigate Disclosure Risks and Benefits When Using LLM-Based Conversational Agents

Sep 20, 2023
Zhiping Zhang, Michelle Jia, Hao-Ping, Lee, Bingsheng Yao, Sauvik Das, Ada Lerner, Dakuo Wang, Tianshi Li

The widespread use of Large Language Model (LLM)-based conversational agents (CAs), especially in high-stakes domains, raises many privacy concerns. Building ethical LLM-based CAs that respect user privacy requires an in-depth understanding of the privacy risks that concern users the most. However, existing research, primarily model-centered, does not provide insight into users' perspectives. To bridge this gap, we analyzed sensitive disclosures in real-world ChatGPT conversations and conducted semi-structured interviews with 19 LLM-based CA users. We found that users are constantly faced with trade-offs between privacy, utility, and convenience when using LLM-based CAs. However, users' erroneous mental models and the dark patterns in system design limited their awareness and comprehension of the privacy risks. Additionally, the human-like interactions encouraged more sensitive disclosures, which complicated users' ability to navigate the trade-offs. We discuss practical design guidelines and the needs for paradigmatic shifts to protect the privacy of LLM-based CA users.

* 37 pages, 5 figures 
Viaarxiv icon