Abstract:Knowledge distillation improves large language model (LLM) reasoning by compressing the knowledge of a teacher LLM to train smaller LLMs. On-policy distillation advances this approach by having the student sample its own trajectories while a teacher LLM provides dense token-level supervision, addressing the distribution mismatch between training and inference in off-policy distillation methods. However, on-policy distillation typically requires a separate, often larger, teacher LLM and does not explicitly leverage ground-truth solutions available in reasoning datasets. Inspired by the intuition that a sufficiently capable LLM can rationalize external privileged reasoning traces and teach its weaker self (i.e., the version without access to privileged information), we introduce On-Policy Self-Distillation (OPSD), a framework where a single model acts as both teacher and student by conditioning on different contexts. The teacher policy conditions on privileged information (e.g., verified reasoning traces) while the student policy sees only the question; training minimizes the per-token divergence between these distributions over the student's own rollouts. We demonstrate the efficacy of our method on multiple mathematical reasoning benchmarks, achieving 4-8x token efficiency compared to reinforcement learning methods such as GRPO and superior performance over off-policy distillation methods.
Abstract:The rapid progress of diffusion models highlights the growing need for detecting generated images. Previous research demonstrates that incorporating diffusion-based measurements, such as reconstruction error, can enhance the generalizability of detectors. However, ignoring the differing impacts of aleatoric and epistemic uncertainty on reconstruction error can undermine detection performance. Aleatoric uncertainty, arising from inherent data noise, creates ambiguity that impedes accurate detection of generated images. As it reflects random variations within the data (e.g., noise in natural textures), it does not help distinguish generated images. In contrast, epistemic uncertainty, which represents the model's lack of knowledge about unfamiliar patterns, supports detection. In this paper, we propose a novel framework, Diffusion Epistemic Uncertainty with Asymmetric Learning~(DEUA), for detecting diffusion-generated images. We introduce Diffusion Epistemic Uncertainty~(DEU) estimation via the Laplace approximation to assess the proximity of data to the manifold of diffusion-generated samples. Additionally, an asymmetric loss function is introduced to train a balanced classifier with larger margins, further enhancing generalizability. Extensive experiments on large-scale benchmarks validate the state-of-the-art performance of our method.
Abstract:Multi-step reasoning tasks like mathematical problem solving are vulnerable to cascading failures, where a single incorrect step leads to complete solution breakdown. Current LLM routing methods assign entire queries to one model, treating all reasoning steps as equal. We propose TRIM (Targeted routing in multi-step reasoning tasks), which routes only critical steps$\unicode{x2013}$those likely to derail the solution$\unicode{x2013}$to larger models while letting smaller models handle routine continuations. Our key insight is that targeted step-level interventions can fundamentally transform inference efficiency by confining expensive calls to precisely those steps where stronger models prevent cascading errors. TRIM operates at the step-level: it uses process reward models to identify erroneous steps and makes routing decisions based on step-level uncertainty and budget constraints. We develop several routing strategies within TRIM, ranging from a simple threshold-based policy to more expressive policies that reason about long-horizon accuracy-cost trade-offs and uncertainty in step-level correctness estimates. On MATH-500, even the simplest thresholding strategy surpasses prior routing methods with 5x higher cost efficiency, while more advanced policies match the strong, expensive model's performance using 80% fewer expensive model tokens. On harder benchmarks such as AIME, TRIM achieves up to 6x higher cost efficiency. All methods generalize effectively across math reasoning tasks, demonstrating that step-level difficulty represents fundamental characteristics of reasoning.
Abstract:This document consolidates publicly reported technical details about Metas Llama 4 model family. It summarizes (i) released variants (Scout and Maverick) and the broader herd context including the previewed Behemoth teacher model, (ii) architectural characteristics beyond a high-level MoE description covering routed/shared-expert structure, early-fusion multimodality, and long-context design elements reported for Scout (iRoPE and length generalization strategies), (iii) training disclosures spanning pre-training, mid-training for long-context extension, and post-training methodology (lightweight SFT, online RL, and lightweight DPO) as described in release materials, (iv) developer-reported benchmark results for both base and instruction-tuned checkpoints, and (v) practical deployment constraints observed across major serving environments, including provider-specific context limits and quantization packaging. The manuscript also summarizes licensing obligations relevant to redistribution and derivative naming, and reviews publicly described safeguards and evaluation practices. The goal is to provide a compact technical reference for researchers and practitioners who need precise, source-backed facts about Llama 4.
Abstract:Mobile GUI agents have shown strong potential in real-world automation and practical applications. However, most existing agents remain reactive, making decisions mainly from current screen, which limits their performance on long-horizon tasks. Building a world model from repeated interactions enables forecasting action outcomes and supports better decision making for mobile GUI agents. This is challenging because the model must predict post-action states with spatial awareness while remaining efficient enough for practical deployment. In this paper, we propose MobileDreamer, an efficient world-model-based lookahead framework to equip the GUI agents based on the future imagination provided by the world model. It consists of textual sketch world model and rollout imagination for GUI agent. Textual sketch world model forecasts post-action states through a learning process to transform digital images into key task-related sketches, and designs a novel order-invariant learning strategy to preserve the spatial information of GUI elements. The rollout imagination strategy for GUI agent optimizes the action-selection process by leveraging the prediction capability of world model. Experiments on Android World show that MobileDreamer achieves state-of-the-art performance and improves task success by 5.25%. World model evaluations further verify that our textual sketch modeling accurately forecasts key GUI elements.
Abstract:Digital twins, as precise digital representations of physical systems, have evolved from passive simulation tools into intelligent and autonomous entities through the integration of artificial intelligence technologies. This paper presents a unified four-stage framework that systematically characterizes AI integration across the digital twin lifecycle, spanning modeling, mirroring, intervention, and autonomous management. By synthesizing existing technologies and practices, we distill a unified four-stage framework that systematically characterizes how AI methodologies are embedded across the digital twin lifecycle: (1) modeling the physical twin through physics-based and physics-informed AI approaches, (2) mirroring the physical system into a digital twin with real-time synchronization, (3) intervening in the physical twin through predictive modeling, anomaly detection, and optimization strategies, and (4) achieving autonomous management through large language models, foundation models, and intelligent agents. We analyze the synergy between physics-based modeling and data-driven learning, highlighting the shift from traditional numerical solvers to physics-informed and foundation models for physical systems. Furthermore, we examine how generative AI technologies, including large language models and generative world models, transform digital twins into proactive and self-improving cognitive systems capable of reasoning, communication, and creative scenario generation. Through a cross-domain review spanning eleven application domains, including healthcare, aerospace, smart manufacturing, robotics, and smart cities, we identify common challenges related to scalability, explainability, and trustworthiness, and outline directions for responsible AI-driven digital twin systems.
Abstract:Deformable linear objects (DLOs) manipulation presents significant challenges due to DLOs' inherent high-dimensional state space and complex deformation dynamics. The wide-populated obstacles in realistic workspaces further complicate DLO manipulation, necessitating efficient deformation planning and robust deformation tracking. In this work, we propose a novel framework for DLO manipulation in constrained environments. This framework combines hierarchical deformation planning with neural tracking, ensuring reliable performance in both global deformation synthesis and local deformation tracking. Specifically, the deformation planner begins by generating a spatial path set that inherently satisfies the homotopic constraints associated with DLO keypoint paths. Next, a path-set-guided optimization method is applied to synthesize an optimal temporal deformation sequence for the DLO. In manipulation execution, a neural model predictive control approach, leveraging a data-driven deformation model, is designed to accurately track the planned DLO deformation sequence. The effectiveness of the proposed framework is validated in extensive constrained DLO manipulation tasks.
Abstract:Identifying specific and often complex behaviors from large language models (LLMs) in conversational settings is crucial for their evaluation. Recent work proposes novel techniques to find natural language prompts that induce specific behaviors from a target model, yet they are mainly studied in single-turn settings. In this work, we study behavior elicitation in the context of multi-turn conversations. We first offer an analytical framework that categorizes existing methods into three families based on their interactions with the target model: those that use only prior knowledge, those that use offline interactions, and those that learn from online interactions. We then introduce a generalized multi-turn formulation of the online method, unifying single-turn and multi-turn elicitation. We evaluate all three families of methods on automatically generating multi-turn test cases. We investigate the efficiency of these approaches by analyzing the trade-off between the query budget, i.e., the number of interactions with the target model, and the success rate, i.e., the discovery rate of behavior-eliciting inputs. We find that online methods can achieve an average success rate of 45/19/77% with just a few thousand queries over three tasks where static methods from existing multi-turn conversation benchmarks find few or even no failure cases. Our work highlights a novel application of behavior elicitation methods in multi-turn conversation evaluation and the need for the community to move towards dynamic benchmarks.
Abstract:Sophisticated text-centric forgeries, fueled by rapid AIGC advancements, pose a significant threat to societal security and information authenticity. Current methods for text-centric forgery analysis are often limited to coarse-grained visual analysis and lack the capacity for sophisticated reasoning. Moreover, they typically treat detection, grounding, and explanation as discrete sub-tasks, overlooking their intrinsic relationships for holistic performance enhancement. To address these challenges, we introduce LogicLens, a unified framework for Visual-Textual Co-reasoning that reformulates these objectives into a joint task. The deep reasoning of LogicLens is powered by our novel Cross-Cues-aware Chain of Thought (CCT) mechanism, which iteratively cross-validates visual cues against textual logic. To ensure robust alignment across all tasks, we further propose a weighted multi-task reward function for GRPO-based optimization. Complementing this framework, we first designed the PR$^2$ (Perceiver, Reasoner, Reviewer) pipeline, a hierarchical and iterative multi-agent system that generates high-quality, cognitively-aligned annotations. Then, we constructed RealText, a diverse dataset comprising 5,397 images with fine-grained annotations, including textual explanations, pixel-level segmentation, and authenticity labels for model training. Extensive experiments demonstrate the superiority of LogicLens across multiple benchmarks. In a zero-shot evaluation on T-IC13, it surpasses the specialized framework by 41.4% and GPT-4o by 23.4% in macro-average F1 score. Moreover, on the challenging dense-text T-SROIE dataset, it establishes a significant lead over other MLLM-based methods in mF1, CSS, and the macro-average F1. Our dataset, model, and code will be made publicly available.
Abstract:Recent studies have demonstrated the effectiveness of clustering-based approaches for self-supervised and unsupervised learning. However, the application of clustering is often heuristic, and the optimal methodology remains unclear. In this work, we establish connections between these unsupervised clustering methods and classical mixture models from statistics. Through this framework, we demonstrate significant enhancements to these clustering methods, leading to the development of a novel model named SiamMM. Our method attains state-of-the-art performance across various self-supervised learning benchmarks. Inspection of the learned clusters reveals a strong resemblance to unseen ground truth labels, uncovering potential instances of mislabeling.