Abstract:Mental health risk is a critical global public health challenge, necessitating innovative and reliable assessment methods. With the development of large language models (LLMs), they stand out to be a promising tool for explainable mental health care applications. Nevertheless, existing approaches predominantly rely on subjective textual mental records, which can be distorted by inherent mental uncertainties, leading to inconsistent and unreliable predictions. To address these limitations, this paper introduces ProMind-LLM. We investigate an innovative approach integrating objective behavior data as complementary information alongside subjective mental records for robust mental health risk assessment. Specifically, ProMind-LLM incorporates a comprehensive pipeline that includes domain-specific pretraining to tailor the LLM for mental health contexts, a self-refine mechanism to optimize the processing of numerical behavioral data, and causal chain-of-thought reasoning to enhance the reliability and interpretability of its predictions. Evaluations of two real-world datasets, PMData and Globem, demonstrate the effectiveness of our proposed methods, achieving substantial improvements over general LLMs. We anticipate that ProMind-LLM will pave the way for more dependable, interpretable, and scalable mental health case solutions.
Abstract:The Science of Science (SoS) explores the mechanisms underlying scientific discovery, and offers valuable insights for enhancing scientific efficiency and fostering innovation. Traditional approaches often rely on simplistic assumptions and basic statistical tools, such as linear regression and rule-based simulations, which struggle to capture the complexity and scale of modern research ecosystems. The advent of artificial intelligence (AI) presents a transformative opportunity for the next generation of SoS, enabling the automation of large-scale pattern discovery and uncovering insights previously unattainable. This paper offers a forward-looking perspective on the integration of Science of Science with AI for automated research pattern discovery and highlights key open challenges that could greatly benefit from AI. We outline the advantages of AI over traditional methods, discuss potential limitations, and propose pathways to overcome them. Additionally, we present a preliminary multi-agent system as an illustrative example to simulate research societies, showcasing AI's ability to replicate real-world research patterns and accelerate progress in Science of Science research.
Abstract:The rapid advancement of scientific progress requires innovative tools that can accelerate discovery. While recent AI methods, particularly large language models (LLMs), have shown promise in tasks such as hypothesis generation and experimental design, they fall short in replicating the collaborative nature of real-world scientific practices, where diverse teams of experts work together to tackle complex problems. To address the limitation, we propose an LLM-based multi-agent system, i.e., Virtual Scientists (VirSci), designed to mimic the teamwork inherent in scientific research. VirSci organizes a team of agents to collaboratively generate, evaluate, and refine research ideas. Through comprehensive experiments, we demonstrate that this multi-agent approach outperforms the state-of-the-art method in producing novel and impactful scientific ideas, showing potential in aligning with key insights in the Science of Science field. Our findings suggest that integrating collaborative agents can lead to more innovative scientific outputs, offering a robust system for autonomous scientific discovery.
Abstract:Mental health disorders are among the most prevalent diseases worldwide, affecting nearly one in four people. Despite their widespread impact, the intervention rate remains below 25%, largely due to the significant cooperation required from patients for both diagnosis and intervention. The core issue behind this low treatment rate is stigma, which discourages over half of those affected from seeking help. This paper presents MindGuard, an accessible, stigma-free, and professional mobile mental healthcare system designed to provide mental health first aid. The heart of MindGuard is an innovative edge LLM, equipped with professional mental health knowledge, that seamlessly integrates objective mobile sensor data with subjective Ecological Momentary Assessment records to deliver personalized screening and intervention conversations. We conduct a broad evaluation of MindGuard using open datasets spanning four years and real-world deployment across various mobile devices involving 20 subjects for two weeks. Remarkably, MindGuard achieves results comparable to GPT-4 and outperforms its counterpart with more than 10 times the model size. We believe that MindGuard paves the way for mobile LLM applications, potentially revolutionizing mental healthcare practices by substituting self-reporting and intervention conversations with passive, integrated monitoring within daily life, thus ensuring accessible and stigma-free mental health support.
Abstract:Accurate ultrasound segmentation is pursued because it aids clinicians in achieving a comprehensive diagnosis. Due to the presence of low image quality and high costs associated with annotation, two primary concerns arise: (1) enhancing the understanding of multi-scale features, and (2) improving the resistance to data dependency. To mitigate these concerns, we propose HCS-TNAS, a novel neural architecture search (NAS) method that automatically designs the network. For the first concern, we employ multi-level searching encompassing cellular, layer, and module levels. Specifically, we design an Efficient NAS-ViT module that searches for multi-scale tokens in the vision Transformer (ViT) to capture context and local information, rather than relying solely on simple combinations of operations. For the second concern, we propose a hybrid constraint-driven semi-supervised learning method that considers additional network independence and incorporates contrastive loss in a NAS formulation. By further developing a stage-wise optimization strategy, a rational network structure can be identified. Extensive experiments on three publicly available ultrasound image datasets demonstrate that HCS-TNAS effectively improves segmentation accuracy and outperforms state-of-the-art methods.
Abstract:Genomic selection (GS), as a critical crop breeding strategy, plays a key role in enhancing food production and addressing the global hunger crisis. The predominant approaches in GS currently revolve around employing statistical methods for prediction. However, statistical methods often come with two main limitations: strong statistical priors and linear assumptions. A recent trend is to capture the non-linear relationships between markers by deep learning. However, as crop datasets are commonly long sequences with limited samples, the robustness of deep learning models, especially Transformers, remains a challenge. In this work, to unleash the unexplored potential of attention mechanism for the task of interest, we propose a simple yet effective Transformer-based framework that enables end-to-end training of the whole sequence. Via experiments on rice3k and wheat3k datasets, we show that, with simple tricks such as k-mer tokenization and random masking, Transformer can achieve overall superior performance against seminal methods on GS tasks of interest.
Abstract:Recent research has highlighted the detection of human respiration rate using commodity WiFi devices. Nevertheless, these devices encounter challenges in accurately discerning human respiration amidst the prevailing human motion interference encountered in daily life. To tackle this predicament, this paper introduces a passive sensing and communication system designed specifically for respiration detection in the presence of robust human motion interference. Operating within the 60.48GHz band, the proposed system aims to detect human respiration even when confronted with substantial human motion interference within close proximity. Subsequently, a neural network is trained using the collected data by us to enable human respiration detection. The experimental results demonstrate a consistently high accuracy rate over 90\% of the human respiration detection under interference, given an adequate sensing duration. Finally, an empirical model is derived analytically to achieve the respiratory rate counting in 10 seconds.
Abstract:Accurate medical image segmentation especially for echocardiographic images with unmissable noise requires elaborate network design. Compared with manual design, Neural Architecture Search (NAS) realizes better segmentation results due to larger search space and automatic optimization, but most of the existing methods are weak in layer-wise feature aggregation and adopt a ``strong encoder, weak decoder" structure, insufficient to handle global relationships and local details. To resolve these issues, we propose a novel semi-supervised hybrid NAS network for accurate medical image segmentation termed SSHNN. In SSHNN, we creatively use convolution operation in layer-wise feature fusion instead of normalized scalars to avoid losing details, making NAS a stronger encoder. Moreover, Transformers are introduced for the compensation of global context and U-shaped decoder is designed to efficiently connect global context with local features. Specifically, we implement a semi-supervised algorithm Mean-Teacher to overcome the limited volume problem of labeled medical image dataset. Extensive experiments on CAMUS echocardiography dataset demonstrate that SSHNN outperforms state-of-the-art approaches and realizes accurate segmentation. Code will be made publicly available.