Abstract:Non-stationarity poses significant challenges for multivariate time series forecasting due to the inherent short-term fluctuations and long-term trends that can lead to spurious regressions or obscure essential long-term relationships. Most existing methods either eliminate or retain non-stationarity without adequately addressing its distinct impacts on short-term and long-term modeling. Eliminating non-stationarity is essential for avoiding spurious regressions and capturing local dependencies in short-term modeling, while preserving it is crucial for revealing long-term cointegration across variates. In this paper, we propose TimeBridge, a novel framework designed to bridge the gap between non-stationarity and dependency modeling in long-term time series forecasting. By segmenting input series into smaller patches, TimeBridge applies Integrated Attention to mitigate short-term non-stationarity and capture stable dependencies within each variate, while Cointegrated Attention preserves non-stationarity to model long-term cointegration across variates. Extensive experiments show that TimeBridge consistently achieves state-of-the-art performance in both short-term and long-term forecasting. Additionally, TimeBridge demonstrates exceptional performance in financial forecasting on the CSI 500 and S&P 500 indices, further validating its robustness and effectiveness. Code is available at \url{https://github.com/Hank0626/TimeBridge}.
Abstract:Policy gradient methods are widely used in reinforcement learning. Yet, the nonconvexity of policy optimization imposes significant challenges in understanding the global convergence of policy gradient methods. For a class of finite-horizon Markov Decision Processes (MDPs) with general state and action spaces, we develop a framework that provides a set of easily verifiable assumptions to ensure the Kurdyka-Lojasiewicz (KL) condition of the policy optimization. Leveraging the KL condition, policy gradient methods converge to the globally optimal policy with a non-asymptomatic rate despite nonconvexity. Our results find applications in various control and operations models, including entropy-regularized tabular MDPs, Linear Quadratic Regulator (LQR) problems, stochastic inventory models, and stochastic cash balance problems, for which we show an $\epsilon$-optimal policy can be obtained using a sample size in $\tilde{\mathcal{O}}(\epsilon^{-1})$ and polynomial in terms of the planning horizon by stochastic policy gradient methods. Our result establishes the first sample complexity for multi-period inventory systems with Markov-modulated demands and stochastic cash balance problems in the literature.
Abstract:We consider stochastic optimization when one only has access to biased stochastic oracles of the objective and the gradient, and obtaining stochastic gradients with low biases comes at high costs. This setting captures various optimization paradigms, such as conditional stochastic optimization, distributionally robust optimization, shortfall risk optimization, and machine learning paradigms, such as contrastive learning. We examine a family of multi-level Monte Carlo (MLMC) gradient methods that exploit a delicate tradeoff among bias, variance, and oracle cost. We systematically study their total sample and computational complexities for strongly convex, convex, and nonconvex objectives and demonstrate their superiority over the widely used biased stochastic gradient method. When combined with the variance reduction techniques like SPIDER, these MLMC gradient methods can further reduce the complexity in the nonconvex regime. Our results imply that a series of stochastic optimization problems with biased oracles, previously considered to be more challenging, is fundamentally no harder than the classical stochastic optimization with unbiased oracles. We also delineate the boundary conditions under which these problems become more difficult. Moreover, MLMC gradient methods significantly improve the best-known complexities in the literature for conditional stochastic optimization and shortfall risk optimization. Our extensive numerical experiments on distributionally robust optimization, pricing and staffing scheduling problems, and contrastive learning demonstrate the superior performance of MLMC gradient methods.
Abstract:Conversational Speech Synthesis (CSS) aims to express a target utterance with the proper speaking style in a user-agent conversation setting. Existing CSS methods employ effective multi-modal context modeling techniques to achieve empathy understanding and expression. However, they often need to design complex network architectures and meticulously optimize the modules within them. In addition, due to the limitations of small-scale datasets containing scripted recording styles, they often fail to simulate real natural conversational styles. To address the above issues, we propose a novel generative expressive CSS system, termed GPT-Talker.We transform the multimodal information of the multi-turn dialogue history into discrete token sequences and seamlessly integrate them to form a comprehensive user-agent dialogue context. Leveraging the power of GPT, we predict the token sequence, that includes both semantic and style knowledge, of response for the agent. After that, the expressive conversational speech is synthesized by the conversation-enriched VITS to deliver feedback to the user.Furthermore, we propose a large-scale Natural CSS Dataset called NCSSD, that includes both naturally recorded conversational speech in improvised styles and dialogues extracted from TV shows. It encompasses both Chinese and English languages, with a total duration of 236 hours.We conducted comprehensive experiments on the reliability of the NCSSD and the effectiveness of our GPT-Talker. Both subjective and objective evaluations demonstrate that our model outperforms other state-of-the-art CSS systems significantly in terms of naturalness and expressiveness. The Code, Dataset, and Pre-trained Model are available at: https://github.com/AI-S2-Lab/GPT-Talker.
Abstract:Long-term stability stands as a crucial requirement in data-driven medium-range global weather forecasting. Spectral bias is recognized as the primary contributor to instabilities, as data-driven methods difficult to learn small-scale dynamics. In this paper, we reveal that the universal mechanism for these instabilities is not only related to spectral bias but also to distortions brought by processing spherical data using conventional convolution. These distortions lead to a rapid amplification of errors over successive long-term iterations, resulting in a significant decline in forecast accuracy. To address this issue, a universal neural operator called the Spherical Harmonic Neural Operator (SHNO) is introduced to improve long-term iterative forecasts. SHNO uses the spherical harmonic basis to mitigate distortions for spherical data and uses gated residual spectral attention (GRSA) to correct spectral bias caused by spurious correlations across different scales. The effectiveness and merit of the proposed method have been validated through its application for spherical Shallow Water Equations (SWEs) and medium-range global weather forecasting. Our findings highlight the benefits and potential of SHNO to improve the accuracy of long-term prediction.
Abstract:The location of knowledge within Generative Pre-trained Transformer (GPT)-like models has seen extensive recent investigation. However, much of the work is focused towards determining locations of individual facts, with the end goal being the editing of facts that are outdated, erroneous, or otherwise harmful, without the time and expense of retraining the entire model. In this work, we investigate a broader view of knowledge location, that of concepts or clusters of related information, instead of disparate individual facts. To do this, we first curate a novel dataset, called DARC, that includes a total of 34 concepts of ~120K factual statements divided into two types of hierarchical categories, namely taxonomy and meronomy. Next, we utilize existing causal mediation analysis methods developed for determining regions of importance for individual facts and apply them to a series of related categories to provide detailed investigation into whether concepts are associated with distinct regions within these models. We find that related categories exhibit similar areas of importance in contrast to less similar categories. However, fine-grained localization of individual category subsets to specific regions is not apparent.
Abstract:Transformer-based and MLP-based methods have emerged as leading approaches in time series forecasting (TSF). While Transformer-based methods excel in capturing long-range dependencies, they suffer from high computational complexities and tend to overfit. Conversely, MLP-based methods offer computational efficiency and adeptness in modeling temporal dynamics, but they struggle with capturing complex temporal patterns effectively. To address these challenges, we propose a novel MLP-based Adaptive Multi-Scale Decomposition (AMD) framework for TSF. Our framework decomposes time series into distinct temporal patterns at multiple scales, leveraging the Multi-Scale Decomposable Mixing (MDM) block to dissect and aggregate these patterns in a residual manner. Complemented by the Dual Dependency Interaction (DDI) block and the Adaptive Multi-predictor Synthesis (AMS) block, our approach effectively models both temporal and channel dependencies and utilizes autocorrelation to refine multi-scale data integration. Comprehensive experiments demonstrate that our AMD framework not only overcomes the limitations of existing methods but also consistently achieves state-of-the-art performance in both long-term and short-term forecasting tasks across various datasets, showcasing superior efficiency. Code is available at \url{https://github.com/TROUBADOUR000/AMD}
Abstract:In various applications, the optimal policy in a strategic decision-making problem depends both on the environmental configuration and exogenous events. For these settings, we introduce Bilevel Optimization with Contextual Markov Decision Processes (BO-CMDP), a stochastic bilevel decision-making model, where the lower level consists of solving a contextual Markov Decision Process (CMDP). BO-CMDP can be viewed as a Stackelberg Game where the leader and a random context beyond the leader's control together decide the setup of (many) MDPs that (potentially multiple) followers best respond to. This framework extends beyond traditional bilevel optimization and finds relevance in diverse fields such as model design for MDPs, tax design, reward shaping and dynamic mechanism design. We propose a stochastic Hyper Policy Gradient Descent (HPGD) algorithm to solve BO-CMDP, and demonstrate its convergence. Notably, HPGD only utilizes observations of the followers' trajectories. Therefore, it allows followers to use any training procedure and the leader to be agnostic of the specific algorithm used, which aligns with various real-world scenarios. We further consider the setting when the leader can influence the training of followers and propose an accelerated algorithm. We empirically demonstrate the performance of our algorithm.
Abstract:Adapting large language models (LLMs) for specific tasks usually involves fine-tuning through reinforcement learning with human feedback (RLHF) on preference data. While these data often come from diverse labelers' groups (e.g., different demographics, ethnicities, company teams, etc.), traditional RLHF approaches adopt a "one-size-fits-all" approach, i.e., they indiscriminately assume and optimize a single preference model, thus not being robust to unique characteristics and needs of the various groups. To address this limitation, we propose a novel Group Robust Preference Optimization (GRPO) method to align LLMs to individual groups' preferences robustly. Our approach builds upon reward-free direct preference optimization methods, but unlike previous approaches, it seeks a robust policy which maximizes the worst-case group performance. To achieve this, GRPO adaptively and sequentially weights the importance of different groups, prioritizing groups with worse cumulative loss. We theoretically study the feasibility of GRPO and analyze its convergence for the log-linear policy class. By fine-tuning LLMs with GRPO using diverse group-based global opinion data, we significantly improved performance for the worst-performing groups, reduced loss imbalances across groups, and improved probability accuracies compared to non-robust baselines.
Abstract:We develop and analyze algorithms for instrumental variable regression by viewing the problem as a conditional stochastic optimization problem. In the context of least-squares instrumental variable regression, our algorithms neither require matrix inversions nor mini-batches and provides a fully online approach for performing instrumental variable regression with streaming data. When the true model is linear, we derive rates of convergence in expectation, that are of order $\mathcal{O}(\log T/T)$ and $\mathcal{O}(1/T^{1-\iota})$ for any $\iota>0$, respectively under the availability of two-sample and one-sample oracles, respectively, where $T$ is the number of iterations. Importantly, under the availability of the two-sample oracle, our procedure avoids explicitly modeling and estimating the relationship between confounder and the instrumental variables, demonstrating the benefit of the proposed approach over recent works based on reformulating the problem as minimax optimization problems. Numerical experiments are provided to corroborate the theoretical results.