Abstract:Text-based speech editing (TSE) modifies speech using only text, eliminating re-recording. However, existing TSE methods, mainly focus on the content accuracy and acoustic consistency of synthetic speech segments, and often overlook the emotional shifts or inconsistency issues introduced by text changes. To address this issue, we propose EmoCorrector, a novel post-correction scheme for TSE. EmoCorrector leverages Retrieval-Augmented Generation (RAG) by extracting the edited text's emotional features, retrieving speech samples with matching emotions, and synthesizing speech that aligns with the desired emotion while preserving the speaker's identity and quality. To support the training and evaluation of emotional consistency modeling in TSE, we pioneer the benchmarking Emotion Correction Dataset for TSE (ECD-TSE). The prominent aspect of ECD-TSE is its inclusion of $<$text, speech$>$ paired data featuring diverse text variations and a range of emotional expressions. Subjective and objective experiments and comprehensive analysis on ECD-TSE confirm that EmoCorrector significantly enhances the expression of intended emotion while addressing emotion inconsistency limitations in current TSE methods. Code and audio examples are available at https://github.com/AI-S2-Lab/EmoCorrector.
Abstract:Chain-of-Thought (CoT) reasoning enhances large language models (LLMs) by enabling step-by-step problem-solving, yet its extension to Long-CoT introduces substantial computational overhead due to increased token length. Existing compression approaches -- instance-level and token-level -- either sacrifice essential local reasoning signals like reflection or yield incoherent outputs. To address these limitations, we propose R1-Compress, a two-stage chunk-level compression framework that preserves both local information and coherence. Our method segments Long-CoT into manageable chunks, applies LLM-driven inner-chunk compression, and employs an inter-chunk search mechanism to select the short and coherent sequence. Experiments on Qwen2.5-Instruct models across MATH500, AIME24, and GPQA-Diamond demonstrate that R1-Compress significantly reduces token usage while maintaining comparable reasoning accuracy. On MATH500, R1-Compress achieves an accuracy of 92.4%, with only a 0.6% drop compared to the Long-CoT baseline, while reducing token usage by about 20%. Source code will be available at https://github.com/w-yibo/R1-Compress
Abstract:Conversational Speech Synthesis (CSS) aims to align synthesized speech with the emotional and stylistic context of user-agent interactions to achieve empathy. Current generative CSS models face interpretability limitations due to insufficient emotional perception and redundant discrete speech coding. To address the above issues, we present Chain-Talker, a three-stage framework mimicking human cognition: Emotion Understanding derives context-aware emotion descriptors from dialogue history; Semantic Understanding generates compact semantic codes via serialized prediction; and Empathetic Rendering synthesizes expressive speech by integrating both components. To support emotion modeling, we develop CSS-EmCap, an LLM-driven automated pipeline for generating precise conversational speech emotion captions. Experiments on three benchmark datasets demonstrate that Chain-Talker produces more expressive and empathetic speech than existing methods, with CSS-EmCap contributing to reliable emotion modeling. The code and demos are available at: https://github.com/AI-S2-Lab/Chain-Talker.
Abstract:Feature selection removes redundant features to enhanc performance and computational efficiency in downstream tasks. Existing works often struggle to capture complex feature interactions and adapt to diverse scenarios. Recent advances in this domain have incorporated generative intelligence to address these drawbacks by uncovering intricate relationships between features. However, two key limitations remain: 1) embedding feature subsets in a continuous space is challenging due to permutation sensitivity, as changes in feature order can introduce biases and weaken the embedding learning process; 2) gradient-based search in the embedding space assumes convexity, which is rarely guaranteed, leading to reduced search effectiveness and suboptimal subsets. To address these limitations, we propose a new framework that can: 1) preserve feature subset knowledge in a continuous embedding space while ensuring permutation invariance; 2) effectively explore the embedding space without relying on strong convex assumptions. For the first objective, we develop an encoder-decoder paradigm to preserve feature selection knowledge into a continuous embedding space. This paradigm captures feature interactions through pairwise relationships within the subset, removing the influence of feature order on the embedding. Moreover, an inducing point mechanism is introduced to accelerate pairwise relationship computations. For the second objective, we employ a policy-based reinforcement learning (RL) approach to guide the exploration of the embedding space. The RL agent effectively navigates the space by balancing multiple objectives. By prioritizing high-potential regions adaptively and eliminating the reliance on convexity assumptions, the RL agent effectively reduces the risk of converging to local optima. Extensive experiments demonstrate the effectiveness, efficiency, robustness and explicitness of our model.
Abstract:We introduce Ming-Lite-Uni, an open-source multimodal framework featuring a newly designed unified visual generator and a native multimodal autoregressive model tailored for unifying vision and language. Specifically, this project provides an open-source implementation of the integrated MetaQueries and M2-omni framework, while introducing the novel multi-scale learnable tokens and multi-scale representation alignment strategy. By leveraging a fixed MLLM and a learnable diffusion model, Ming-Lite-Uni enables native multimodal AR models to perform both text-to-image generation and instruction based image editing tasks, expanding their capabilities beyond pure visual understanding. Our experimental results demonstrate the strong performance of Ming-Lite-Uni and illustrate the impressive fluid nature of its interactive process. All code and model weights are open-sourced to foster further exploration within the community. Notably, this work aligns with concurrent multimodal AI milestones - such as ChatGPT-4o with native image generation updated in March 25, 2025 - underscoring the broader significance of unified models like Ming-Lite-Uni on the path toward AGI. Ming-Lite-Uni is in alpha stage and will soon be further refined.
Abstract:Recently, long-thought reasoning models achieve strong performance on complex reasoning tasks, but often incur substantial inference overhead, making efficiency a critical concern. Our empirical analysis reveals that the benefit of using Long-CoT varies across problems: while some problems require elaborate reasoning, others show no improvement, or even degraded accuracy. This motivates adaptive reasoning strategies that tailor reasoning depth to the input. However, prior work primarily reduces redundancy within long reasoning paths, limiting exploration of more efficient strategies beyond the Long-CoT paradigm. To address this, we propose a novel two-stage framework for adaptive and efficient reasoning. First, we construct a hybrid reasoning model by merging long and short CoT models to enable diverse reasoning styles. Second, we apply bi-level preference training to guide the model to select suitable reasoning styles (group-level), and prefer concise and correct reasoning within each style group (instance-level). Experiments demonstrate that our method significantly reduces inference costs compared to other baseline approaches, while maintaining performance. Notably, on five mathematical datasets, the average length of reasoning is reduced by more than 50%, highlighting the potential of adaptive strategies to optimize reasoning efficiency in large language models. Our code is coming soon at https://github.com/StarDewXXX/AdaR1
Abstract:3D Gaussian Splatting (3DGS) has been recognized as a pioneering technique in scene reconstruction and novel view synthesis. Recent work on reconstructing the 3D human body using 3DGS attempts to leverage prior information on human pose to enhance rendering quality and improve training speed. However, it struggles to effectively fit dynamic surface planes due to multi-view inconsistency and redundant Gaussians. This inconsistency arises because Gaussian ellipsoids cannot accurately represent the surfaces of dynamic objects, which hinders the rapid reconstruction of the dynamic human body. Meanwhile, the prevalence of redundant Gaussians means that the training time of these works is still not ideal for quickly fitting a dynamic human body. To address these, we propose EfficientHuman, a model that quickly accomplishes the dynamic reconstruction of the human body using Articulated 2D Gaussian while ensuring high rendering quality. The key innovation involves encoding Gaussian splats as Articulated 2D Gaussian surfels in canonical space and then transforming them to pose space via Linear Blend Skinning (LBS) to achieve efficient pose transformations. Unlike 3D Gaussians, Articulated 2D Gaussian surfels can quickly conform to the dynamic human body while ensuring view-consistent geometries. Additionally, we introduce a pose calibration module and an LBS optimization module to achieve precise fitting of dynamic human poses, enhancing the model's performance. Extensive experiments on the ZJU-MoCap dataset demonstrate that EfficientHuman achieves rapid 3D dynamic human reconstruction in less than a minute on average, which is 20 seconds faster than the current state-of-the-art method, while also reducing the number of redundant Gaussians.
Abstract:Wetlands constitute critical ecosystems that support both biodiversity and human well-being; however, they have experienced a significant decline since the 20th century. Back in the 1970s, researchers began to employ remote sensing technologies for wetland classification and mapping to elucidate the extent and variations of wetlands. Although some review articles summarized the development of this field, there is a lack of a thorough and in-depth understanding of wetland classification and mapping: (1) the scientific importance of wetlands, (2) major data, methods used in wetland classification and mapping, (3) driving factors of wetland changes, (4) current research paradigm and limitations, (5) challenges and opportunities in wetland classification and mapping under the context of technological innovation and global environmental change. In this review, we aim to provide a comprehensive perspective and new insights into wetland classification and mapping for readers to answer these questions. First, we conduct a meta-analysis of over 1,200 papers, encompassing wetland types, methods, sensor types, and study sites, examining prevailing trends in wetland classification and mapping. Next, we review and synthesize the wetland features and existing data and methods in wetland classification and mapping. We also summarize typical wetland mapping products and explore the intrinsic driving factors of wetland changes across multiple spatial and temporal scales. Finally, we discuss current limitations and propose future directions in response to global environmental change and technological innovation. This review consolidates our understanding of wetland remote sensing and offers scientific recommendations that foster transformative progress in wetland science.
Abstract:Instruction-guided image editing enables users to specify modifications using natural language, offering more flexibility and control. Among existing frameworks, Diffusion Transformers (DiTs) outperform U-Net-based diffusion models in scalability and performance. However, while real-world scenarios often require concurrent execution of multiple instructions, step-by-step editing suffers from accumulated errors and degraded quality, and integrating multiple instructions with a single prompt usually results in incomplete edits due to instruction conflicts. We propose Instruction Influence Disentanglement (IID), a novel framework enabling parallel execution of multiple instructions in a single denoising process, designed for DiT-based models. By analyzing self-attention mechanisms in DiTs, we identify distinctive attention patterns in multi-instruction settings and derive instruction-specific attention masks to disentangle each instruction's influence. These masks guide the editing process to ensure localized modifications while preserving consistency in non-edited regions. Extensive experiments on open-source and custom datasets demonstrate that IID reduces diffusion steps while improving fidelity and instruction completion compared to existing baselines. The codes will be publicly released upon the acceptance of the paper.
Abstract:Evolutionary transfer optimization (ETO) has been gaining popularity in research over the years due to its outstanding knowledge transfer ability to address various challenges in optimization. However, a pressing issue in this field is that the invention of new ETO algorithms has far outpaced the development of fundamental theories needed to clearly understand the key factors contributing to the success of these algorithms for effective generalization. In response to this challenge, this study aims to establish theoretical foundations for analogy-based ETO, specifically to support various algorithms that frequently reference a key concept known as similarity. First, we introduce analogical reasoning and link its subprocesses to three key issues in ETO. Then, we develop theories for analogy-based knowledge transfer, rooted in the principles that underlie the subprocesses. Afterwards, we present two theorems related to the performance gain of analogy-based knowledge transfer, namely unconditionally nonnegative performance gain and conditionally positive performance gain, to theoretically demonstrate the effectiveness of various analogy-based ETO methods. Last but not least, we offer a novel insight into analogy-based ETO that interprets its conditional superiority over traditional evolutionary optimization through the lens of the no free lunch theorem for optimization.