Abstract:With the current surge in spatial reasoning explorations, researchers have made significant progress in understanding indoor scenes, but still struggle with diverse applications such as robotics and autonomous driving. This paper aims to advance all-scale spatial reasoning across diverse scenarios by tackling two key challenges: 1) the heavy reliance on indoor 3D scans and labor-intensive manual annotations for dataset curation; 2) the absence of effective all-scale scene modeling, which often leads to overfitting to individual scenes. In this paper, we introduce a holistic solution that integrates a structured spatial reasoning knowledge system, scale-aware modeling, and a progressive training paradigm, as the first attempt to broaden the all-scale spatial intelligence of MLLMs to the best of our knowledge. Using a task-specific, specialist-driven automated pipeline, we curate over 38K video scenes across 5 spatial scales to create SpaceVista-1M, a dataset comprising approximately 1M spatial QA pairs spanning 19 diverse task types. While specialist models can inject useful domain knowledge, they are not reliable for evaluation. We then build an all-scale benchmark with precise annotations by manually recording, retrieving, and assembling video-based data. However, naive training with SpaceVista-1M often yields suboptimal results due to the potential knowledge conflict. Accordingly, we introduce SpaceVista-7B, a spatial reasoning model that accepts dense inputs beyond semantics and uses scale as an anchor for scale-aware experts and progressive rewards. Finally, extensive evaluations across 5 benchmarks, including our SpaceVista-Bench, demonstrate competitive performance, showcasing strong generalization across all scales and scenarios. Our dataset, model, and benchmark will be released on https://peiwensun2000.github.io/mm2km .
Abstract:Electroencephalography (EEG), with its broad range of applications, necessitates models that can generalize effectively across various tasks and datasets. Large EEG Models (LEMs) address this by pretraining encoder-centric architectures on large-scale unlabeled data to extract universal representations. While effective, these models lack decoders of comparable capacity, limiting the full utilization of the learned features. To address this issue, we introduce ECHO, a novel decoder-centric LEM paradigm that reformulates EEG modeling as sequence-to-sequence learning. ECHO captures layered relationships among signals, labels, and tasks within sequence space, while incorporating discrete support samples to construct contextual cues. This design equips ECHO with in-context learning, enabling dynamic adaptation to heterogeneous tasks without parameter updates. Extensive experiments across multiple datasets demonstrate that, even with basic model components, ECHO consistently outperforms state-of-the-art single-task LEMs in multi-task settings, showing superior generalization and adaptability.
Abstract:Electroencephalography (EEG) is a non-invasive technique for recording brain electrical activity, widely used in brain-computer interface (BCI) and healthcare. Recent EEG foundation models trained on large-scale datasets have shown improved performance and generalizability over traditional decoding methods, yet significant challenges remain. Existing models often fail to explicitly capture channel-to-channel and region-to-region interactions, which are critical sources of information inherently encoded in EEG signals. Due to varying channel configurations across datasets, they either approximate spatial structure with self-attention or restrict training to a limited set of common channels, sacrificing flexibility and effectiveness. Moreover, although EEG datasets reflect diverse brain states such as emotion, motor, and others, current models rarely learn state-aware representations during self-supervised pre-training. To address these gaps, we propose BrainPro, a large EEG model that introduces a retrieval-based spatial learning block to flexibly capture channel- and region-level interactions across varying electrode layouts, and a brain state-decoupling block that enables state-aware representation learning through parallel encoders with decoupling and region-aware reconstruction losses. This design allows BrainPro to adapt seamlessly to diverse tasks and hardware settings. Pre-trained on an extensive EEG corpus, BrainPro achieves state-of-the-art performance and robust generalization across nine public BCI datasets. Our codes and the pre-trained weights will be released.
Abstract:In comparison with existing approaches, which struggle with scalability, communication dependency, and robustness against dynamic failures, cooperative aerial transportation via robot swarms holds transformative potential for logistics and disaster response. Here, we present a physics-inspired cooperative transportation approach for flying robot swarms that imitates the dissipative mechanics of table-leg load distribution. By developing a decentralized dissipative force model, our approach enables autonomous formation stabilization and adaptive load allocation without the requirement of explicit communication. Based on local neighbor robots and the suspended payload, each robot dynamically adjusts its position. This is similar to energy-dissipating table leg reactions. The stability of the resultant control system is rigorously proved. Simulations demonstrate that the tracking errors of the proposed approach are 20%, 68%, 55.5%, and 21.9% of existing approaches under the cases of capability variation, cable uncertainty, limited vision, and payload variation, respectively. In real-world experiments with six flying robots, the cooperative aerial transportation system achieved a 94% success rate under single-robot failure, disconnection events, 25% payload variation, and 40% cable length uncertainty, demonstrating strong robustness under outdoor winds up to Beaufort scale 4. Overall, this physics-inspired approach bridges swarm intelligence and mechanical stability principles, offering a scalable framework for heterogeneous aerial systems to collectively handle complex transportation tasks in communication-constrained environments.
Abstract:Large language models (LLMs) are increasingly deployed in sensitive contexts where fairness and inclusivity are critical. Pronoun usage, especially concerning gender-neutral and neopronouns, remains a key challenge for responsible AI. Prior work, such as the MISGENDERED benchmark, revealed significant limitations in earlier LLMs' handling of inclusive pronouns, but was constrained to outdated models and limited evaluations. In this study, we introduce MISGENDERED+, an extended and updated benchmark for evaluating LLMs' pronoun fidelity. We benchmark five representative LLMs, GPT-4o, Claude 4, DeepSeek-V3, Qwen Turbo, and Qwen2.5, across zero-shot, few-shot, and gender identity inference. Our results show notable improvements compared with previous studies, especially in binary and gender-neutral pronoun accuracy. However, accuracy on neopronouns and reverse inference tasks remains inconsistent, underscoring persistent gaps in identity-sensitive reasoning. We discuss implications, model-specific observations, and avenues for future inclusive AI research.
Abstract:We introduce SafeWork-R1, a cutting-edge multimodal reasoning model that demonstrates the coevolution of capabilities and safety. It is developed by our proposed SafeLadder framework, which incorporates large-scale, progressive, safety-oriented reinforcement learning post-training, supported by a suite of multi-principled verifiers. Unlike previous alignment methods such as RLHF that simply learn human preferences, SafeLadder enables SafeWork-R1 to develop intrinsic safety reasoning and self-reflection abilities, giving rise to safety `aha' moments. Notably, SafeWork-R1 achieves an average improvement of $46.54\%$ over its base model Qwen2.5-VL-72B on safety-related benchmarks without compromising general capabilities, and delivers state-of-the-art safety performance compared to leading proprietary models such as GPT-4.1 and Claude Opus 4. To further bolster its reliability, we implement two distinct inference-time intervention methods and a deliberative search mechanism, enforcing step-level verification. Finally, we further develop SafeWork-R1-InternVL3-78B, SafeWork-R1-DeepSeek-70B, and SafeWork-R1-Qwen2.5VL-7B. All resulting models demonstrate that safety and capability can co-evolve synergistically, highlighting the generalizability of our framework in building robust, reliable, and trustworthy general-purpose AI.
Abstract:With the emergence of strong visual-language capabilities, multimodal large language models (MLLMs) have demonstrated tremendous potential for real-world applications. However, the security vulnerabilities exhibited by the visual modality pose significant challenges to deploying such models in open-world environments. Recent studies have successfully induced harmful responses from target MLLMs by encoding harmful textual semantics directly into visual inputs. However, in these approaches, the visual modality primarily serves as a trigger for unsafe behavior, often exhibiting semantic ambiguity and lacking grounding in realistic scenarios. In this work, we define a novel setting: visual-centric jailbreak, where visual information serves as a necessary component in constructing a complete and realistic jailbreak context. Building on this setting, we propose the VisCo (Visual Contextual) Attack. VisCo fabricates contextual dialogue using four distinct visual-focused strategies, dynamically generating auxiliary images when necessary to construct a visual-centric jailbreak scenario. To maximize attack effectiveness, it incorporates automatic toxicity obfuscation and semantic refinement to produce a final attack prompt that reliably triggers harmful responses from the target black-box MLLMs. Specifically, VisCo achieves a toxicity score of 4.78 and an Attack Success Rate (ASR) of 85% on MM-SafetyBench against GPT-4o, significantly outperforming the baseline, which performs a toxicity score of 2.48 and an ASR of 22.2%. The code is available at https://github.com/Dtc7w3PQ/Visco-Attack.
Abstract:Reasoning Vision-Language Models (VLMs) have shown promising performance on complex multimodal tasks. However, they still face significant challenges: they are highly sensitive to reasoning errors, require large volumes of annotated data or accurate verifiers, and struggle to generalize beyond specific domains. To address these limitations, we explore self-correction as a strategy to enhance reasoning VLMs. We first conduct an in-depth analysis of reasoning VLMs' self-correction abilities and identify key gaps. Based on our findings, we introduce Sherlock, a self-correction and self-improvement training framework. Sherlock introduces a trajectory-level self-correction objective, a preference data construction method based on visual perturbation, and a dynamic $\beta$ for preference tuning. Once the model acquires self-correction capabilities using only 20k randomly sampled annotated data, it continues to self-improve without external supervision. Built on the Llama3.2-Vision-11B model, Sherlock achieves remarkable results across eight benchmarks, reaching an average accuracy of 64.1 with direct generation and 65.4 after self-correction. It outperforms LLaVA-CoT (63.2), Mulberry (63.9), and LlamaV-o1 (63.4) while using less than 20% of the annotated data.
Abstract:Carbon intensity (CI) measures the average carbon emissions generated per unit of electricity, making it a crucial metric for quantifying and managing the environmental impact. Accurate CI predictions are vital for minimizing carbon footprints, yet the state-of-the-art method (CarbonCast) falls short due to its inability to address regional variability and lack of adaptability. To address these limitations, we introduce EnsembleCI, an adaptive, end-to-end ensemble learning-based approach for CI forecasting. EnsembleCI combines weighted predictions from multiple sublearners, offering enhanced flexibility and regional adaptability. In evaluations across 11 regional grids, EnsembleCI consistently surpasses CarbonCast, achieving the lowest mean absolute percentage error (MAPE) in almost all grids and improving prediction accuracy by an average of 19.58%. While performance still varies across grids due to inherent regional diversity, EnsembleCI reduces variability and exhibits greater robustness in long-term forecasting compared to CarbonCast and identifies region-specific key features, underscoring its interpretability and practical relevance. These findings position EnsembleCI as a more accurate and reliable solution for CI forecasting. EnsembleCI source code and data used in this paper are available at https://github.com/emmayly/EnsembleCI.
Abstract:Multimodal physiological signals, such as EEG, ECG, EOG, and EMG, are crucial for healthcare and brain-computer interfaces. While existing methods rely on specialized architectures and dataset-specific fusion strategies, they struggle to learn universal representations that generalize across datasets and handle missing modalities at inference time. To address these issues, we propose PhysioOmni, a foundation model for multimodal physiological signal analysis that models both homogeneous and heterogeneous features to decouple multimodal signals and extract generic representations while maintaining compatibility with arbitrary missing modalities. PhysioOmni trains a decoupled multimodal tokenizer, enabling masked signal pre-training via modality-invariant and modality-specific objectives. To ensure adaptability to diverse and incomplete modality combinations, the pre-trained encoders undergo resilient fine-tuning with prototype alignment on downstream datasets. Extensive experiments on four downstream tasks, emotion recognition, sleep stage classification, motor prediction, and mental workload detection, demonstrate that PhysioOmni achieves state-of-the-art performance while maintaining strong robustness to missing modalities. Our code and model weights will be released.