Abstract:Large Language Models (LLMs) have demonstrated exceptional capabilities across diverse natural language processing (NLP) tasks. The release of open-source LLMs like LLaMA and Qwen has triggered the development of numerous fine-tuned models tailored for various tasks and languages. In this paper, we explore an important question: is it possible to combine these specialized models to create a unified model with multi-task capabilities. We introduces Hierarchical Iterative Merging (Hi-Merging), a training-free method for unifying different specialized LLMs into a single model. Specifically, Hi-Merging employs model-wise and layer-wise pruning and scaling, guided by contribution analysis, to mitigate parameter conflicts. Extensive experiments on multiple-choice and question-answering tasks in both Chinese and English validate Hi-Merging's ability for multi-task learning. The results demonstrate that Hi-Merging consistently outperforms existing merging techniques and surpasses the performance of models fine-tuned on combined datasets in most scenarios. Code is available at: https://github.com/Applied-Machine-Learning-Lab/Hi-Merging.
Abstract:Large Language Models (LLMs) require continuous updates to maintain accurate and current knowledge as the world evolves. While existing knowledge editing approaches offer various solutions for knowledge updating, they often struggle with sequential editing scenarios and harm the general capabilities of the model, thereby significantly hampering their practical applicability. This paper proposes a two-stage framework combining robust supervised fine-tuning (R-SFT) with model merging for knowledge editing. Our method first fine-tunes the LLM to internalize new knowledge fully, then merges the fine-tuned model with the original foundation model to preserve newly acquired knowledge and general capabilities. Experimental results demonstrate that our approach significantly outperforms existing methods in sequential editing while better preserving the original performance of the model, all without requiring any architectural changes. Code is available at: https://github.com/Applied-Machine-Learning-Lab/MM4KE.
Abstract:Reinforcement learning (RL) has emerged as a pivotal method for improving the reasoning capabilities of Large Language Models (LLMs). However, prevalent RL approaches such as Proximal Policy Optimization (PPO) and Group-Regularized Policy Optimization (GRPO) face critical limitations due to their reliance on sparse outcome-based rewards and inadequate mechanisms for incentivizing exploration. These limitations result in inefficient guidance for multi-step reasoning processes. Specifically, sparse reward signals fail to deliver effective or sufficient feedback, particularly for challenging problems. Furthermore, such reward structures induce systematic biases that prioritize exploitation of familiar trajectories over novel solution discovery. These shortcomings critically hinder performance in complex reasoning tasks, which inherently demand iterative refinement across ipntermediate steps. To address these challenges, we propose an Intrinsic Motivation guidEd exploratioN meThOd foR LLM Reasoning (i-MENTOR), a novel method designed to both deliver dense rewards and amplify explorations in the RL-based training paradigm. i-MENTOR introduces three key innovations: trajectory-aware exploration rewards that mitigate bias in token-level strategies while maintaining computational efficiency; dynamic reward scaling to stabilize exploration and exploitation in large action spaces; and advantage-preserving reward implementation that maintains advantage distribution integrity while incorporating exploratory guidance. Experiments across three public datasets demonstrate i-MENTOR's effectiveness with a 22.39% improvement on the difficult dataset Countdown-4.
Abstract:Cross-domain Sequential Recommendation (CDSR) aims to extract the preference from the user's historical interactions across various domains. Despite some progress in CDSR, two problems set the barrier for further advancements, i.e., overlap dilemma and transition complexity. The former means existing CDSR methods severely rely on users who own interactions on all domains to learn cross-domain item relationships, compromising the practicability. The latter refers to the difficulties in learning the complex transition patterns from the mixed behavior sequences. With powerful representation and reasoning abilities, Large Language Models (LLMs) are promising to address these two problems by bridging the items and capturing the user's preferences from a semantic view. Therefore, we propose an LLMs Enhanced Cross-domain Sequential Recommendation model (LLM4CDSR). To obtain the semantic item relationships, we first propose an LLM-based unified representation module to represent items. Then, a trainable adapter with contrastive regularization is designed to adapt the CDSR task. Besides, a hierarchical LLMs profiling module is designed to summarize user cross-domain preferences. Finally, these two modules are integrated into the proposed tri-thread framework to derive recommendations. We have conducted extensive experiments on three public cross-domain datasets, validating the effectiveness of LLM4CDSR. We have released the code online.
Abstract:Auto-bidding, with its strong capability to optimize bidding decisions within dynamic and competitive online environments, has become a pivotal strategy for advertising platforms. Existing approaches typically employ rule-based strategies or Reinforcement Learning (RL) techniques. However, rule-based strategies lack the flexibility to adapt to time-varying market conditions, and RL-based methods struggle to capture essential historical dependencies and observations within Markov Decision Process (MDP) frameworks. Furthermore, these approaches often face challenges in ensuring strategy adaptability across diverse advertising objectives. Additionally, as offline training methods are increasingly adopted to facilitate the deployment and maintenance of stable online strategies, the issues of documented behavioral patterns and behavioral collapse resulting from training on fixed offline datasets become increasingly significant. To address these limitations, this paper introduces a novel offline Generative Auto-bidding framework with Value-Guided Explorations (GAVE). GAVE accommodates various advertising objectives through a score-based Return-To-Go (RTG) module. Moreover, GAVE integrates an action exploration mechanism with an RTG-based evaluation method to explore novel actions while ensuring stability-preserving updates. A learnable value function is also designed to guide the direction of action exploration and mitigate Out-of-Distribution (OOD) problems. Experimental results on two offline datasets and real-world deployments demonstrate that GAVE outperforms state-of-the-art baselines in both offline evaluations and online A/B tests. The implementation code is publicly available to facilitate reproducibility and further research.
Abstract:Recent advances in transformer-based Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks. However, their quadratic computational complexity concerning sequence length remains a significant bottleneck for processing long documents. As a result, many efforts like sparse attention and state space models have been proposed to improve the efficiency of LLMs over long sequences. Though effective, these approaches compromise the performance or introduce structural complexity. This calls for a simple yet efficient model that preserves the fundamental Transformer architecture. To this end, we introduce SWAT, which enables efficient long-context handling via Sliding Window Attention Training. This paper first attributes the inefficiency of Transformers to the attention sink phenomenon resulting from the high variance of softmax operation. Then, we replace softmax with the sigmoid function and utilize a balanced ALiBi and Rotary Position Embedding for efficient information compression and retention. Experiments demonstrate that SWAT achieves SOTA performance compared with state-of-the-art linear recurrent architectures on eight benchmarks. Code is available at https://anonymous.4open.science/r/SWAT-attention.
Abstract:Delivering superior search services is crucial for enhancing customer experience and driving revenue growth. Conventionally, search systems model user behaviors by combining user preference and query item relevance statically, often through a fixed logical 'and' relationship. This paper reexamines existing approaches through a unified lens using both causal graphs and Venn diagrams, uncovering two prevalent yet significant issues: entangled preference and relevance effects, and a collapsed modeling space. To surmount these challenges, our research introduces a novel framework, DRP, which enhances search accuracy through two components to reconstruct the behavior modeling space. Specifically, we implement preference editing to proactively remove the relevance effect from preference predictions, yielding untainted user preferences. Additionally, we employ adaptive fusion, which dynamically adjusts fusion criteria to align with the varying patterns of relevance and preference, facilitating more nuanced and tailored behavior predictions within the reconstructed modeling space. Empirical validation on two public datasets and a proprietary search dataset underscores the superiority of our proposed methodology, demonstrating marked improvements in performance over existing approaches.
Abstract:Multi Scenario Recommendation (MSR) tasks, referring to building a unified model to enhance performance across all recommendation scenarios, have recently gained much attention. However, current research in MSR faces two significant challenges that hinder the field's development: the absence of uniform procedures for multi-scenario dataset processing, thus hindering fair comparisons, and most models being closed-sourced, which complicates comparisons with current SOTA models. Consequently, we introduce our benchmark, \textbf{Scenario-Wise Rec}, which comprises 6 public datasets and 12 benchmark models, along with a training and evaluation pipeline. Additionally, we validated the benchmark using an industrial advertising dataset, reinforcing its reliability and applicability in real-world scenarios. We aim for this benchmark to offer researchers valuable insights from prior work, enabling the development of novel models based on our benchmark and thereby fostering a collaborative research ecosystem in MSR. Our source code is also publicly available.
Abstract:Large Language Model (LLM) has transformative potential in various domains, including recommender systems (RS). There have been a handful of research that focuses on empowering the RS by LLM. However, previous efforts mainly focus on LLM as RS, which may face the challenge of intolerant inference costs by LLM. Recently, the integration of LLM into RS, known as LLM-Enhanced Recommender Systems (LLMERS), has garnered significant interest due to its potential to address latency and memory constraints in real-world applications. This paper presents a comprehensive survey of the latest research efforts aimed at leveraging LLM to enhance RS capabilities. We identify a critical shift in the field with the move towards incorporating LLM into the online system, notably by avoiding their use during inference. Our survey categorizes the existing LLMERS approaches into three primary types based on the component of the RS model being augmented: Knowledge Enhancement, Interaction Enhancement, and Model Enhancement. We provide an in-depth analysis of each category, discussing the methodologies, challenges, and contributions of recent studies. Furthermore, we highlight several promising research directions that could further advance the field of LLMERS.
Abstract:GPRec explicitly categorizes users into groups in a learnable manner and aligns them with corresponding group embeddings. We design the dual group embedding space to offer a diverse perspective on group preferences by contrasting positive and negative patterns. On the individual level, GPRec identifies personal preferences from ID-like features and refines the obtained individual representations to be independent of group ones, thereby providing a robust complement to the group-level modeling. We also present various strategies for the flexible integration of GPRec into various DRS models. Rigorous testing of GPRec on three public datasets has demonstrated significant improvements in recommendation quality.