Jack
Abstract:Perturbation with diverse unlabeled data has proven beneficial for semi-supervised medical image segmentation (SSMIS). While many works have successfully used various perturbation techniques, a deeper understanding of learning perturbations is needed. Excessive or inappropriate perturbation can have negative effects, so we aim to address two challenges: how to use perturbation mechanisms to guide the learning of unlabeled data through labeled data, and how to ensure accurate predictions in boundary regions. Inspired by human progressive and periodic learning, we propose a progressive and periodic perturbation mechanism (P3M) and a boundary-focused loss. P3M enables dynamic adjustment of perturbations, allowing the model to gradually learn them. Our boundary-focused loss encourages the model to concentrate on boundary regions, enhancing sensitivity to intricate details and ensuring accurate predictions. Experimental results demonstrate that our method achieves state-of-the-art performance on two 2D and 3D datasets. Moreover, P3M is extendable to other methods, and the proposed loss serves as a universal tool for improving existing methods, highlighting the scalability and applicability of our approach.
Abstract:Large Language Models (LLMs) and Vision-Language Models (VLMs) have demonstrated remarkable reasoning and generalization capabilities in video understanding; however, their application in video editing remains largely underexplored. This paper presents the first systematic study of LLMs in the context of video editing. To bridge the gap between visual information and language-based reasoning, we introduce L-Storyboard, an intermediate representation that transforms discrete video shots into structured language descriptions suitable for LLM processing. We categorize video editing tasks into Convergent Tasks and Divergent Tasks, focusing on three core tasks: Shot Attributes Classification, Next Shot Selection, and Shot Sequence Ordering. To address the inherent instability of divergent task outputs, we propose the StoryFlow strategy, which converts the divergent multi-path reasoning process into a convergent selection mechanism, effectively enhancing task accuracy and logical coherence. Experimental results demonstrate that L-Storyboard facilitates a more robust mapping between visual information and language descriptions, significantly improving the interpretability and privacy protection of video editing tasks. Furthermore, StoryFlow enhances the logical consistency and output stability in Shot Sequence Ordering, underscoring the substantial potential of LLMs in intelligent video editing.
Abstract:Understanding cell identity and function through single-cell level sequencing data remains a key challenge in computational biology. We present a novel framework that leverages gene-specific textual annotations from the NCBI Gene database to generate biologically contextualized cell embeddings. For each cell in a single-cell RNA sequencing (scRNA-seq) dataset, we rank genes by expression level, retrieve their NCBI Gene descriptions, and transform these descriptions into vector embedding representations using large language models (LLMs). The models used include OpenAI text-embedding-ada-002, text-embedding-3-small, and text-embedding-3-large (Jan 2024), as well as domain-specific models BioBERT and SciBERT. Embeddings are computed via an expression-weighted average across the top N most highly expressed genes in each cell, providing a compact, semantically rich representation. This multimodal strategy bridges structured biological data with state-of-the-art language modeling, enabling more interpretable downstream applications such as cell-type clustering, cell vulnerability dissection, and trajectory inference.
Abstract:Cross-domain Sequential Recommendation (CDSR) aims to extract the preference from the user's historical interactions across various domains. Despite some progress in CDSR, two problems set the barrier for further advancements, i.e., overlap dilemma and transition complexity. The former means existing CDSR methods severely rely on users who own interactions on all domains to learn cross-domain item relationships, compromising the practicability. The latter refers to the difficulties in learning the complex transition patterns from the mixed behavior sequences. With powerful representation and reasoning abilities, Large Language Models (LLMs) are promising to address these two problems by bridging the items and capturing the user's preferences from a semantic view. Therefore, we propose an LLMs Enhanced Cross-domain Sequential Recommendation model (LLM4CDSR). To obtain the semantic item relationships, we first propose an LLM-based unified representation module to represent items. Then, a trainable adapter with contrastive regularization is designed to adapt the CDSR task. Besides, a hierarchical LLMs profiling module is designed to summarize user cross-domain preferences. Finally, these two modules are integrated into the proposed tri-thread framework to derive recommendations. We have conducted extensive experiments on three public cross-domain datasets, validating the effectiveness of LLM4CDSR. We have released the code online.
Abstract:This paper explores the application of movable antenna (MA), a cutting-edge technology with the capability of altering antenna positions, in a symbiotic radio (SR) system enabled by reconfigurable intelligent surface (RIS). The goal is to fully exploit the capabilities of both MA and RIS, constructing a better transmission environment for the co-existing primary and secondary transmission systems. For both parasitic SR (PSR) and commensal SR (CSR) scenarios with the channel uncertainties experienced by all transmission links, we design a robust transmission scheme with the goal of maximizing the primary rate while ensuring the secondary transmission quality. To address the maximization problem with thorny non-convex characteristics, we propose an alternating optimization framework that utilizes the General S-Procedure, General Sign-Definiteness Principle, successive convex approximation (SCA), and simulated annealing (SA) improved particle swarm optimization (SA-PSO) algorithms. Numerical results validate that the CSR scenario significantly outperforms the PSR scenario in terms of primary rate, and also show that compared to the fixed-position antenna scheme, the proposed MA scheme can increase the primary rate by 1.62 bps/Hz and 2.37 bps/Hz for the PSR and CSR scenarios, respectively.
Abstract:We propose VRSketch2Gaussian, a first VR sketch-guided, multi-modal, native 3D object generation framework that incorporates a 3D Gaussian Splatting representation. As part of our work, we introduce VRSS, the first large-scale paired dataset containing VR sketches, text, images, and 3DGS, bridging the gap in multi-modal VR sketch-based generation. Our approach features the following key innovations: 1) Sketch-CLIP feature alignment. We propose a two-stage alignment strategy that bridges the domain gap between sparse VR sketch embeddings and rich CLIP embeddings, facilitating both VR sketch-based retrieval and generation tasks. 2) Fine-Grained multi-modal conditioning. We disentangle the 3D generation process by using explicit VR sketches for geometric conditioning and text descriptions for appearance control. To facilitate this, we propose a generalizable VR sketch encoder that effectively aligns different modalities. 3) Efficient and high-fidelity 3D native generation. Our method leverages a 3D-native generation approach that enables fast and texture-rich 3D object synthesis. Experiments conducted on our VRSS dataset demonstrate that our method achieves high-quality, multi-modal VR sketch-based 3D generation. We believe our VRSS dataset and VRsketch2Gaussian method will be beneficial for the 3D generation community.
Abstract:Sequential Recommender Systems (SRS) have become a cornerstone of online platforms, leveraging users' historical interaction data to forecast their next potential engagement. Despite their widespread adoption, SRS often grapple with the long-tail user dilemma, resulting in less effective recommendations for individuals with limited interaction records. The advent of Large Language Models (LLMs), with their profound capability to discern semantic relationships among items, has opened new avenues for enhancing SRS through data augmentation. Nonetheless, current methodologies encounter obstacles, including the absence of collaborative signals and the prevalence of hallucination phenomena.In this work, we present LLMSeR, an innovative framework that utilizes Large Language Models (LLMs) to generate pseudo-prior items, thereby improving the efficacy of Sequential Recommender Systems (SRS). To alleviate the challenge of insufficient collaborative signals, we introduce the Semantic Interaction Augmentor (SIA), a method that integrates both semantic and collaborative information to comprehensively augment user interaction data. Moreover, to weaken the adverse effects of hallucination in SRS, we develop the Adaptive Reliability Validation (ARV), a validation technique designed to assess the reliability of the generated pseudo items. Complementing these advancements, we also devise a Dual-Channel Training strategy, ensuring seamless integration of data augmentation into the SRS training process.Extensive experiments conducted with three widely-used SRS models demonstrate the generalizability and efficacy of LLMSeR.
Abstract:Medication recommendation is one of the most critical health-related applications, which has attracted extensive research interest recently. Most existing works focus on a single hospital with abundant medical data. However, many small hospitals only have a few records, which hinders applying existing medication recommendation works to the real world. Thus, we seek to explore a more practical setting, i.e., multi-center medication recommendation. In this setting, most hospitals have few records, but the total number of records is large. Though small hospitals may benefit from total affluent records, it is also faced with the challenge that the data distributions between various hospitals are much different. In this work, we introduce a novel conTrastive prEtrain Model with Prompt Tuning (TEMPT) for multi-center medication recommendation, which includes two stages of pretraining and finetuning. We first design two self-supervised tasks for the pretraining stage to learn general medical knowledge. They are mask prediction and contrastive tasks, which extract the intra- and inter-relationships of input diagnosis and procedures. Furthermore, we devise a novel prompt tuning method to capture the specific information of each hospital rather than adopting the common finetuning. On the one hand, the proposed prompt tuning can better learn the heterogeneity of each hospital to fit various distributions. On the other hand, it can also relieve the catastrophic forgetting problem of finetuning. To validate the proposed model, we conduct extensive experiments on the public eICU, a multi-center medical dataset. The experimental results illustrate the effectiveness of our model. The implementation code is available to ease the reproducibility https://github.com/Applied-Machine-Learning-Lab/TEMPT.
Abstract:Large Language Model (LLM) has transformative potential in various domains, including recommender systems (RS). There have been a handful of research that focuses on empowering the RS by LLM. However, previous efforts mainly focus on LLM as RS, which may face the challenge of intolerant inference costs by LLM. Recently, the integration of LLM into RS, known as LLM-Enhanced Recommender Systems (LLMERS), has garnered significant interest due to its potential to address latency and memory constraints in real-world applications. This paper presents a comprehensive survey of the latest research efforts aimed at leveraging LLM to enhance RS capabilities. We identify a critical shift in the field with the move towards incorporating LLM into the online system, notably by avoiding their use during inference. Our survey categorizes the existing LLMERS approaches into three primary types based on the component of the RS model being augmented: Knowledge Enhancement, Interaction Enhancement, and Model Enhancement. We provide an in-depth analysis of each category, discussing the methodologies, challenges, and contributions of recent studies. Furthermore, we highlight several promising research directions that could further advance the field of LLMERS.
Abstract:Artificial intelligence (AI) has rapidly developed through advancements in computational power and the growth of massive datasets. However, this progress has also heightened challenges in interpreting the "black-box" nature of AI models. To address these concerns, eXplainable AI (XAI) has emerged with a focus on transparency and interpretability to enhance human understanding and trust in AI decision-making processes. In the context of multimodal data fusion and complex reasoning scenarios, the proposal of Multimodal eXplainable AI (MXAI) integrates multiple modalities for prediction and explanation tasks. Meanwhile, the advent of Large Language Models (LLMs) has led to remarkable breakthroughs in natural language processing, yet their complexity has further exacerbated the issue of MXAI. To gain key insights into the development of MXAI methods and provide crucial guidance for building more transparent, fair, and trustworthy AI systems, we review the MXAI methods from a historical perspective and categorize them across four eras: traditional machine learning, deep learning, discriminative foundation models, and generative LLMs. We also review evaluation metrics and datasets used in MXAI research, concluding with a discussion of future challenges and directions. A project related to this review has been created at https://github.com/ShilinSun/mxai_review.