Refer to the report for detailed contributions
Abstract:This paper reports on the NTIRE 2025 challenge on Text to Image (T2I) generation model quality assessment, which will be held in conjunction with the New Trends in Image Restoration and Enhancement Workshop (NTIRE) at CVPR 2025. The aim of this challenge is to address the fine-grained quality assessment of text-to-image generation models. This challenge evaluates text-to-image models from two aspects: image-text alignment and image structural distortion detection, and is divided into the alignment track and the structural track. The alignment track uses the EvalMuse-40K, which contains around 40K AI-Generated Images (AIGIs) generated by 20 popular generative models. The alignment track has a total of 371 registered participants. A total of 1,883 submissions are received in the development phase, and 507 submissions are received in the test phase. Finally, 12 participating teams submitted their models and fact sheets. The structure track uses the EvalMuse-Structure, which contains 10,000 AI-Generated Images (AIGIs) with corresponding structural distortion mask. A total of 211 participants have registered in the structure track. A total of 1155 submissions are received in the development phase, and 487 submissions are received in the test phase. Finally, 8 participating teams submitted their models and fact sheets. Almost all methods have achieved better results than baseline methods, and the winning methods in both tracks have demonstrated superior prediction performance on T2I model quality assessment.
Abstract:Large Language Models (LLMs) have shown great promise in code analysis and auditing; however, they still struggle with hallucinations and limited context-aware reasoning. We introduce SmartAuditFlow, a novel Plan-Execute framework that enhances smart contract security analysis through dynamic audit planning and structured execution. Unlike conventional LLM-based auditing approaches that follow fixed workflows and predefined steps, SmartAuditFlow dynamically generates and refines audit plans based on the unique characteristics of each smart contract. It continuously adjusts its auditing strategy in response to intermediate LLM outputs and newly detected vulnerabilities, ensuring a more adaptive and precise security assessment. The framework then executes these plans step by step, applying a structured reasoning process to enhance vulnerability detection accuracy while minimizing hallucinations and false positives. To further improve audit precision, SmartAuditFlow integrates iterative prompt optimization and external knowledge sources, such as static analysis tools and Retrieval-Augmented Generation (RAG). This ensures audit decisions are contextually informed and backed by real-world security knowledge, producing comprehensive security reports. Extensive evaluations across multiple benchmarks demonstrate that SmartAuditFlow outperforms existing methods, achieving 100 percent accuracy on common and critical vulnerabilities, 41.2 percent accuracy for comprehensive coverage of known smart contract weaknesses in real-world projects, and successfully identifying all 13 tested CVEs. These results highlight SmartAuditFlow's scalability, cost-effectiveness, and superior adaptability over traditional static analysis tools and contemporary LLM-based approaches, establishing it as a robust solution for automated smart contract auditing.
Abstract:This paper introduces \textsc{InfantAgent-Next}, a generalist agent capable of interacting with computers in a multimodal manner, encompassing text, images, audio, and video. Unlike existing approaches that either build intricate workflows around a single large model or only provide workflow modularity, our agent integrates tool-based and pure vision agents within a highly modular architecture, enabling different models to collaboratively solve decoupled tasks in a step-by-step manner. Our generality is demonstrated by our ability to evaluate not only pure vision-based real-world benchmarks (i.e., OSWorld), but also more general or tool-intensive benchmarks (e.g., GAIA and SWE-Bench). Specifically, we achieve $\mathbf{7.27\%}$ accuracy on OSWorld, higher than Claude-Computer-Use. Codes and evaluation scripts are open-sourced at https://github.com/bin123apple/InfantAgent.
Abstract:Computational chemistry tools are widely used to study the behaviour of chemical phenomena. Yet, the complexity of these tools can make them inaccessible to non-specialists and challenging even for experts. In this work, we introduce El Agente Q, an LLM-based multi-agent system that dynamically generates and executes quantum chemistry workflows from natural language user prompts. The system is built on a novel cognitive architecture featuring a hierarchical memory framework that enables flexible task decomposition, adaptive tool selection, post-analysis, and autonomous file handling and submission. El Agente Q is benchmarked on six university-level course exercises and two case studies, demonstrating robust problem-solving performance (averaging >87% task success) and adaptive error handling through in situ debugging. It also supports longer-term, multi-step task execution for more complex workflows, while maintaining transparency through detailed action trace logs. Together, these capabilities lay the foundation for increasingly autonomous and accessible quantum chemistry.
Abstract:High-quality preference data is essential for aligning foundation models with human values through preference learning. However, manual annotation of such data is often time-consuming and costly. Recent methods often adopt a self-rewarding approach, where the target model generates and annotates its own preference data, but this can lead to inaccuracies since the reward model shares weights with the target model, thereby amplifying inherent biases. To address these issues, we propose Anyprefer, a framework designed to synthesize high-quality preference data for aligning the target model. Anyprefer frames the data synthesis process as a cooperative two-player Markov Game, where the target model and the judge model collaborate together. Here, a series of external tools are introduced to assist the judge model in accurately rewarding the target model's responses, mitigating biases in the rewarding process. In addition, a feedback mechanism is introduced to optimize prompts for both models, enhancing collaboration and improving data quality. The synthesized data is compiled into a new preference dataset, Anyprefer-V1, consisting of 58K high-quality preference pairs. Extensive experiments show that Anyprefer significantly improves model alignment performance across four main applications, covering 21 datasets, achieving average improvements of 18.55% in five natural language generation datasets, 3.66% in nine vision-language understanding datasets, 30.05% in three medical image analysis datasets, and 16.00% in four visuo-motor control tasks.
Abstract:Cross-domain Sequential Recommendation (CDSR) aims to extract the preference from the user's historical interactions across various domains. Despite some progress in CDSR, two problems set the barrier for further advancements, i.e., overlap dilemma and transition complexity. The former means existing CDSR methods severely rely on users who own interactions on all domains to learn cross-domain item relationships, compromising the practicability. The latter refers to the difficulties in learning the complex transition patterns from the mixed behavior sequences. With powerful representation and reasoning abilities, Large Language Models (LLMs) are promising to address these two problems by bridging the items and capturing the user's preferences from a semantic view. Therefore, we propose an LLMs Enhanced Cross-domain Sequential Recommendation model (LLM4CDSR). To obtain the semantic item relationships, we first propose an LLM-based unified representation module to represent items. Then, a trainable adapter with contrastive regularization is designed to adapt the CDSR task. Besides, a hierarchical LLMs profiling module is designed to summarize user cross-domain preferences. Finally, these two modules are integrated into the proposed tri-thread framework to derive recommendations. We have conducted extensive experiments on three public cross-domain datasets, validating the effectiveness of LLM4CDSR. We have released the code online.
Abstract:While text-to-image (T2I) generation models have achieved remarkable progress in recent years, existing evaluation methodologies for vision-language alignment still struggle with the fine-grained semantic matching. Current approaches based on global similarity metrics often overlook critical token-level correspondences between textual descriptions and visual content. To this end, we present TokenFocus-VQA, a novel evaluation framework that leverages Large Vision-Language Models (LVLMs) through visual question answering (VQA) paradigm with position-specific probability optimization. Our key innovation lies in designing a token-aware loss function that selectively focuses on probability distributions at pre-defined vocabulary positions corresponding to crucial semantic elements, enabling precise measurement of fine-grained semantical alignment. The proposed framework further integrates ensemble learning techniques to aggregate multi-perspective assessments from diverse LVLMs architectures, thereby achieving further performance enhancement. Evaluated on the NTIRE 2025 T2I Quality Assessment Challenge Track 1, our TokenFocus-VQA ranks 2nd place (0.8445, only 0.0001 lower than the 1st method) on public evaluation and 2nd place (0.8426) on the official private test set, demonstrating superiority in capturing nuanced text-image correspondences compared to conventional evaluation methods.
Abstract:Generative models have recently gained attention in recommendation systems by directly predicting item identifiers from user interaction sequences. However, existing methods suffer from significant information loss due to the separation of stages such as quantization and sequence modeling, hindering their ability to achieve the modeling precision and accuracy of sequential dense retrieval techniques. Integrating generative and dense retrieval methods remains a critical challenge. To address this, we introduce the Cascaded Organized Bi-Represented generAtive retrieval (COBRA) framework, which innovatively integrates sparse semantic IDs and dense vectors through a cascading process. Our method alternates between generating these representations by first generating sparse IDs, which serve as conditions to aid in the generation of dense vectors. End-to-end training enables dynamic refinement of dense representations, capturing both semantic insights and collaborative signals from user-item interactions. During inference, COBRA employs a coarse-to-fine strategy, starting with sparse ID generation and refining them into dense vectors via the generative model. We further propose BeamFusion, an innovative approach combining beam search with nearest neighbor scores to enhance inference flexibility and recommendation diversity. Extensive experiments on public datasets and offline tests validate our method's robustness. Online A/B tests on a real-world advertising platform with over 200 million daily users demonstrate substantial improvements in key metrics, highlighting COBRA's practical advantages.
Abstract:Medication recommendation is one of the most critical health-related applications, which has attracted extensive research interest recently. Most existing works focus on a single hospital with abundant medical data. However, many small hospitals only have a few records, which hinders applying existing medication recommendation works to the real world. Thus, we seek to explore a more practical setting, i.e., multi-center medication recommendation. In this setting, most hospitals have few records, but the total number of records is large. Though small hospitals may benefit from total affluent records, it is also faced with the challenge that the data distributions between various hospitals are much different. In this work, we introduce a novel conTrastive prEtrain Model with Prompt Tuning (TEMPT) for multi-center medication recommendation, which includes two stages of pretraining and finetuning. We first design two self-supervised tasks for the pretraining stage to learn general medical knowledge. They are mask prediction and contrastive tasks, which extract the intra- and inter-relationships of input diagnosis and procedures. Furthermore, we devise a novel prompt tuning method to capture the specific information of each hospital rather than adopting the common finetuning. On the one hand, the proposed prompt tuning can better learn the heterogeneity of each hospital to fit various distributions. On the other hand, it can also relieve the catastrophic forgetting problem of finetuning. To validate the proposed model, we conduct extensive experiments on the public eICU, a multi-center medical dataset. The experimental results illustrate the effectiveness of our model. The implementation code is available to ease the reproducibility https://github.com/Applied-Machine-Learning-Lab/TEMPT.
Abstract:Instance features in images exhibit spurious correlations with background features, affecting the training process of deep neural classifiers. This leads to insufficient attention to instance features by the classifier, resulting in erroneous classification outcomes. In this paper, we propose a data augmentation method called Spurious Correlations Guided Synthesis (SCGS) that mitigates spurious correlations through image generation model. This approach does not require expensive spurious attribute (group) labels for the training data and can be widely applied to other debiasing methods. Specifically, SCGS first identifies the incorrect attention regions of a pre-trained classifier on the training images, and then uses an image generation model to generate new training data based on these incorrect attended regions. SCGS increases the diversity and scale of the dataset to reduce the impact of spurious correlations on classifiers. Changes in the classifier's attention regions and experimental results on three different domain datasets demonstrate that this method is effective in reducing the classifier's reliance on spurious correlations.