Refer to the report for detailed contributions
Abstract:We introduce LongCat-Flash-Thinking-2601, a 560-billion-parameter open-source Mixture-of-Experts (MoE) reasoning model with superior agentic reasoning capability. LongCat-Flash-Thinking-2601 achieves state-of-the-art performance among open-source models on a wide range of agentic benchmarks, including agentic search, agentic tool use, and tool-integrated reasoning. Beyond benchmark performance, the model demonstrates strong generalization to complex tool interactions and robust behavior under noisy real-world environments. Its advanced capability stems from a unified training framework that combines domain-parallel expert training with subsequent fusion, together with an end-to-end co-design of data construction, environments, algorithms, and infrastructure spanning from pre-training to post-training. In particular, the model's strong generalization capability in complex tool-use are driven by our in-depth exploration of environment scaling and principled task construction. To optimize long-tailed, skewed generation and multi-turn agentic interactions, and to enable stable training across over 10,000 environments spanning more than 20 domains, we systematically extend our asynchronous reinforcement learning framework, DORA, for stable and efficient large-scale multi-environment training. Furthermore, recognizing that real-world tasks are inherently noisy, we conduct a systematic analysis and decomposition of real-world noise patterns, and design targeted training procedures to explicitly incorporate such imperfections into the training process, resulting in improved robustness for real-world applications. To further enhance performance on complex reasoning tasks, we introduce a Heavy Thinking mode that enables effective test-time scaling by jointly expanding reasoning depth and width through intensive parallel thinking.
Abstract:Long documents pose many challenges to current intelligent writing systems. These include maintaining consistency across sections, sustaining efficient planning and writing as documents become more complex, and effectively providing and integrating AI assistance to the user. Existing AI co-writing tools offer either inline suggestions or limited structured planning, but rarely support the entire writing process that begins with high-level ideas and ends with polished prose, in which many layers of planning and outlining are needed. Here, we introduce TreeWriter, a hierarchical writing system that represents documents as trees and integrates contextual AI support. TreeWriter allows authors to create, save, and refine document outlines at multiple levels, facilitating drafting, understanding, and iterative editing of long documents. A built-in AI agent can dynamically load relevant content, navigate the document hierarchy, and provide context-aware editing suggestions. A within-subject study (N=12) comparing TreeWriter with Google Docs + Gemini on long-document editing and creative writing tasks shows that TreeWriter improves idea exploration/development, AI helpfulness, and perceived authorial control. A two-month field deployment (N=8) further demonstrated that hierarchical organization supports collaborative writing. Our findings highlight the potential of hierarchical, tree-structured editors with integrated AI support and provide design guidelines for future AI-assisted writing tools that balance automation with user agency.
Abstract:In recommender systems, online A/B testing is a crucial method for evaluating the performance of different models. However, conducting online A/B testing often presents significant challenges, including substantial economic costs, user experience degradation, and considerable time requirements. With the Large Language Models' powerful capacity, LLM-based agent shows great potential to replace traditional online A/B testing. Nonetheless, current agents fail to simulate the perception process and interaction patterns, due to the lack of real environments and visual perception capability. To address these challenges, we introduce a multi-modal user agent for A/B testing (A/B Agent). Specifically, we construct a recommendation sandbox environment for A/B testing, enabling multimodal and multi-page interactions that align with real user behavior on online platforms. The designed agent leverages multimodal information perception, fine-grained user preferences, and integrates profiles, action memory retrieval, and a fatigue system to simulate complex human decision-making. We validated the potential of the agent as an alternative to traditional A/B testing from three perspectives: model, data, and features. Furthermore, we found that the data generated by A/B Agent can effectively enhance the capabilities of recommendation models. Our code is publicly available at https://github.com/Applied-Machine-Learning-Lab/ABAgent.
Abstract:Conventional Sequential Recommender Systems (SRS) typically assign unique Hash IDs (HID) to construct item embeddings. These HID embeddings effectively learn collaborative information from historical user-item interactions, making them vulnerable to situations where most items are rarely consumed (the long-tail problem). Recent methods that incorporate auxiliary information often suffer from noisy collaborative sharing caused by co-occurrence signals or semantic homogeneity caused by flat dense embeddings. Semantic IDs (SIDs), with their capability of code sharing and multi-granular semantic modeling, provide a promising alternative. However, the collaborative overwhelming phenomenon hinders the further development of SID-based methods. The quantization mechanisms commonly compromise the uniqueness of identifiers required for modeling head items, creating a performance seesaw between head and tail items. To address this dilemma, we propose \textbf{\name}, a novel framework that harmonizes the SID and HID. Specifically, we devise a dual-branch modeling architecture that enables the model to capture both the multi-granular semantics within SID while preserving the unique collaborative identity of HID. Furthermore, we introduce a dual-level alignment strategy that bridges the two representations, facilitating knowledge transfer and supporting robust preference modeling. Extensive experiments on three real-world datasets show that \name~ effectively balances recommendation quality for both head and tail items while surpassing the existing baselines. The implementation code can be found online\footnote{https://github.com/ziwliu8/H2Rec}.
Abstract:Forecasting 3D human motion is an important embodiment of fine-grained understanding and cognition of human behavior by artificial agents. Current approaches excessively rely on implicit network modeling of spatiotemporal relationships and motion characteristics, falling into the passive learning trap that results in redundant and monotonous 3D coordinate information acquisition while lacking actively guided explicit learning mechanisms. To overcome these issues, we propose an Active Perceptual Strategy (APS) for human motion prediction, leveraging quotient space representations to explicitly encode motion properties while introducing auxiliary learning objectives to strengthen spatio-temporal modeling. Specifically, we first design a data perception module that projects poses into the quotient space, decoupling motion geometry from coordinate redundancy. By jointly encoding tangent vectors and Grassmann projections, this module simultaneously achieves geometric dimension reduction, semantic decoupling, and dynamic constraint enforcement for effective motion pose characterization. Furthermore, we introduce a network perception module that actively learns spatio-temporal dependencies through restorative learning. This module deliberately masks specific joints or injects noise to construct auxiliary supervision signals. A dedicated auxiliary learning network is designed to actively adapt and learn from perturbed information. Notably, APS is model agnostic and can be integrated with different prediction models to enhance active perceptual. The experimental results demonstrate that our method achieves the new state-of-the-art, outperforming existing methods by large margins: 16.3% on H3.6M, 13.9% on CMU Mocap, and 10.1% on 3DPW.




Abstract:Accurate traffic forecasting plays a vital role in intelligent transportation systems, enabling applications such as congestion control, route planning, and urban mobility optimization. However, traffic forecasting remains challenging due to two key factors: (1) complex spatial dependencies arising from dynamic interactions between road segments and traffic sensors across the network, and (2) the coexistence of multi-scale periodic patterns (e.g., daily and weekly periodic patterns driven by human routines) with irregular fluctuations caused by unpredictable events (e.g., accidents, weather, or construction). To tackle these challenges, we propose HyperD (Hybrid Periodic Decoupling), a novel framework that decouples traffic data into periodic and residual components. The periodic component is handled by the Hybrid Periodic Representation Module, which extracts fine-grained daily and weekly patterns using learnable periodic embeddings and spatial-temporal attention. The residual component, which captures non-periodic, high-frequency fluctuations, is modeled by the Frequency-Aware Residual Representation Module, leveraging complex-valued MLP in frequency domain. To enforce semantic separation between the two components, we further introduce a Dual-View Alignment Loss, which aligns low-frequency information with the periodic branch and high-frequency information with the residual branch. Extensive experiments on four real-world traffic datasets demonstrate that HyperD achieves state-of-the-art prediction accuracy, while offering superior robustness under disturbances and improved computational efficiency compared to existing methods.
Abstract:Fine-grained urban flow inference is crucial for urban planning and intelligent transportation systems, enabling precise traffic management and resource allocation. However, the practical deployment of existing methods is hindered by two key challenges: the prohibitive computational cost of over-parameterized models and the suboptimal performance of conventional loss functions on the highly skewed distribution of urban flows. To address these challenges, we propose a unified solution that synergizes architectural efficiency with adaptive optimization. Specifically, we first introduce PLGF, a lightweight yet powerful architecture that employs a Progressive Local-Global Fusion strategy to effectively capture both fine-grained details and global contextual dependencies. Second, we propose DualFocal Loss, a novel function that integrates dual-space supervision with a difficulty-aware focusing mechanism, enabling the model to adaptively concentrate on hard-to-predict regions. Extensive experiments on 4 real-world scenarios validate the effectiveness and scalability of our method. Notably, while achieving state-of-the-art performance, PLGF reduces the model size by up to 97% compared to current high-performing methods. Furthermore, under comparable parameter budgets, our model yields an accuracy improvement of over 10% against strong baselines. The implementation is included in the https://github.com/Yasoz/PLGF.
Abstract:Temporal non-stationarity, the phenomenon that time series distributions change over time, poses fundamental challenges to reliable time series forecasting. Intuitively, the complex time series can be decomposed into two factors, \ie time-invariant and time-varying components, which indicate static and dynamic patterns, respectively. Nonetheless, existing methods often conflate the time-varying and time-invariant components, and jointly learn the combined long-term patterns and short-term fluctuations, leading to suboptimal performance facing distribution shifts. To address this issue, we initiatively propose a lightweight static-dynamic decomposition framework, TimeEmb, for time series forecasting. TimeEmb innovatively separates time series into two complementary components: (1) time-invariant component, captured by a novel global embedding module that learns persistent representations across time series, and (2) time-varying component, processed by an efficient frequency-domain filtering mechanism inspired by full-spectrum analysis in signal processing. Experiments on real-world datasets demonstrate that TimeEmb outperforms state-of-the-art baselines and requires fewer computational resources. We conduct comprehensive quantitative and qualitative analyses to verify the efficacy of static-dynamic disentanglement. This lightweight framework can also improve existing time-series forecasting methods with simple integration. To ease reproducibility, the code is available at https://github.com/showmeon/TimeEmb.




Abstract:This paper reviews the MARS2 2025 Challenge on Multimodal Reasoning. We aim to bring together different approaches in multimodal machine learning and LLMs via a large benchmark. We hope it better allows researchers to follow the state-of-the-art in this very dynamic area. Meanwhile, a growing number of testbeds have boosted the evolution of general-purpose large language models. Thus, this year's MARS2 focuses on real-world and specialized scenarios to broaden the multimodal reasoning applications of MLLMs. Our organizing team released two tailored datasets Lens and AdsQA as test sets, which support general reasoning in 12 daily scenarios and domain-specific reasoning in advertisement videos, respectively. We evaluated 40+ baselines that include both generalist MLLMs and task-specific models, and opened up three competition tracks, i.e., Visual Grounding in Real-world Scenarios (VG-RS), Visual Question Answering with Spatial Awareness (VQA-SA), and Visual Reasoning in Creative Advertisement Videos (VR-Ads). Finally, 76 teams from the renowned academic and industrial institutions have registered and 40+ valid submissions (out of 1200+) have been included in our ranking lists. Our datasets, code sets (40+ baselines and 15+ participants' methods), and rankings are publicly available on the MARS2 workshop website and our GitHub organization page https://github.com/mars2workshop/, where our updates and announcements of upcoming events will be continuously provided.
Abstract:Large Vision-Language Models (LVLMs) have demonstrated impressive performance on multimodal tasks through scaled architectures and extensive training. However, existing Mixture of Experts (MoE) approaches face challenges due to the asymmetry between visual and linguistic processing. Visual information is spatially complete, while language requires maintaining sequential context. As a result, MoE models struggle to balance modality-specific features and cross-modal interactions. Through systematic analysis, we observe that language experts in deeper layers progressively lose contextual grounding and rely more on parametric knowledge rather than utilizing the provided visual and linguistic information. To address this, we propose AsyMoE, a novel architecture that models this asymmetry using three specialized expert groups. We design intra-modality experts for modality-specific processing, hyperbolic inter-modality experts for hierarchical cross-modal interactions, and evidence-priority language experts to suppress parametric biases and maintain contextual grounding. Extensive experiments demonstrate that AsyMoE achieves 26.58% and 15.45% accuracy improvements over vanilla MoE and modality-specific MoE respectively, with 25.45% fewer activated parameters than dense models.