Refer to the report for detailed contributions
Abstract:Recent advancements in video generation have significantly impacted daily life for both individuals and industries. However, the leading video generation models remain closed-source, resulting in a notable performance gap between industry capabilities and those available to the public. In this report, we introduce HunyuanVideo, an innovative open-source video foundation model that demonstrates performance in video generation comparable to, or even surpassing, that of leading closed-source models. HunyuanVideo encompasses a comprehensive framework that integrates several key elements, including data curation, advanced architectural design, progressive model scaling and training, and an efficient infrastructure tailored for large-scale model training and inference. As a result, we successfully trained a video generative model with over 13 billion parameters, making it the largest among all open-source models. We conducted extensive experiments and implemented a series of targeted designs to ensure high visual quality, motion dynamics, text-video alignment, and advanced filming techniques. According to evaluations by professionals, HunyuanVideo outperforms previous state-of-the-art models, including Runway Gen-3, Luma 1.6, and three top-performing Chinese video generative models. By releasing the code for the foundation model and its applications, we aim to bridge the gap between closed-source and open-source communities. This initiative will empower individuals within the community to experiment with their ideas, fostering a more dynamic and vibrant video generation ecosystem. The code is publicly available at https://github.com/Tencent/HunyuanVideo.
Abstract:Despite the recent advancements of vision-language-action (VLA) models on a variety of robotics tasks, they suffer from critical issues such as poor generalizability to unseen tasks, due to their reliance on behavior cloning exclusively from successful rollouts. Furthermore, they are typically fine-tuned to replicate demonstrations collected by experts under different settings, thus introducing distribution bias and limiting their adaptability to diverse manipulation objectives, such as efficiency, safety, and task completion. To bridge this gap, we introduce GRAPE: Generalizing Robot Policy via Preference Alignment. Specifically, GRAPE aligns VLAs on a trajectory level and implicitly models reward from both successful and failure trials to boost generalizability to diverse tasks. Moreover, GRAPE breaks down complex manipulation tasks to independent stages and automatically guides preference modeling through customized spatiotemporal constraints with keypoints proposed by a large vision-language model. Notably, these constraints are flexible and can be customized to align the model with varying objectives, such as safety, efficiency, or task success. We evaluate GRAPE across a diverse array of tasks in both real-world and simulated environments. Experimental results demonstrate that GRAPE enhances the performance of state-of-the-art VLA models, increasing success rates on in-domain and unseen manipulation tasks by 51.79% and 60.36%, respectively. Additionally, GRAPE can be aligned with various objectives, such as safety and efficiency, reducing collision rates by 44.31% and rollout step-length by 11.15%, respectively. All code, models, and data are available at https://grape-vla.github.io/
Abstract:With the rapid advancement of neural language models, the deployment of over-parameterized models has surged, increasing the need for interpretable explanations comprehensible to human inspectors. Existing post-hoc interpretability methods, which often focus on unigram features of single input textual instances, fail to capture the models' decision-making process fully. Additionally, many methods do not differentiate between decisions based on spurious correlations and those based on a holistic understanding of the input. Our paper introduces DISCO, a novel method for discovering global, rule-based explanations by identifying causal n-gram associations with model predictions. This method employs a scalable sequence mining technique to extract relevant text spans from training data, associate them with model predictions, and conduct causality checks to distill robust rules that elucidate model behavior. These rules expose potential overfitting and provide insights into misleading feature combinations. We validate DISCO through extensive testing, demonstrating its superiority over existing methods in offering comprehensive insights into complex model behaviors. Our approach successfully identifies all shortcuts manually introduced into the training data (100% detection rate on the MultiRC dataset), resulting in an 18.8% regression in model performance -- a capability unmatched by any other method. Furthermore, DISCO supports interactive explanations, enabling human inspectors to distinguish spurious causes in the rule-based output. This alleviates the burden of abundant instance-wise explanations and helps assess the model's risk when encountering out-of-distribution (OOD) data.
Abstract:Abstract Modern image generation (IG) models have been shown to capture rich semantics valuable for image understanding (IU) tasks. However, the potential of IU models to improve IG performance remains uncharted. We address this issue using a token-based IG framework, which relies on effective tokenizers to project images into token sequences. Currently, pixel reconstruction (e.g., VQGAN) dominates the training objective for image tokenizers. In contrast, our approach adopts the feature reconstruction objective, where tokenizers are trained by distilling knowledge from pretrained IU encoders. Comprehensive comparisons indicate that tokenizers with strong IU capabilities achieve superior IG performance across a variety of metrics, datasets, tasks, and proposal networks. Notably, VQ-KD CLIP achieves $4.10$ FID on ImageNet-1k (IN-1k). Visualization suggests that the superiority of VQ-KD can be partly attributed to the rich semantics within the VQ-KD codebook. We further introduce a straightforward pipeline to directly transform IU encoders into tokenizers, demonstrating exceptional effectiveness for IG tasks. These discoveries may energize further exploration into image tokenizer research and inspire the community to reassess the relationship between IU and IG. The code is released at https://github.com/magic-research/vector_quantization.
Abstract:Recommender systems play a pivotal role across practical scenarios, showcasing remarkable capabilities in user preference modeling. However, the centralized learning paradigm predominantly used raises serious privacy concerns. The federated recommender system (FedRS) addresses this by updating models on clients, while a central server orchestrates training without accessing private data. Existing FedRS approaches, however, face unresolved challenges, including non-convex optimization, vulnerability, potential privacy leakage risk, and communication inefficiency. This paper addresses these challenges by reformulating the federated recommendation problem as a convex optimization issue, ensuring convergence to the global optimum. Based on this, we devise a novel method, RFRec, to tackle this optimization problem efficiently. In addition, we propose RFRecF, a highly efficient version that incorporates non-uniform stochastic gradient descent to improve communication efficiency. In user preference modeling, both methods learn local and global models, collaboratively learning users' common and personalized interests under the federated learning setting. Moreover, both methods significantly enhance communication efficiency, robustness, and privacy protection, with theoretical support. Comprehensive evaluations on four benchmark datasets demonstrate RFRec and RFRecF's superior performance compared to diverse baselines.
Abstract:GPRec explicitly categorizes users into groups in a learnable manner and aligns them with corresponding group embeddings. We design the dual group embedding space to offer a diverse perspective on group preferences by contrasting positive and negative patterns. On the individual level, GPRec identifies personal preferences from ID-like features and refines the obtained individual representations to be independent of group ones, thereby providing a robust complement to the group-level modeling. We also present various strategies for the flexible integration of GPRec into various DRS models. Rigorous testing of GPRec on three public datasets has demonstrated significant improvements in recommendation quality.
Abstract:The rise of blockchain technologies has greatly accelerated the development and deployment of smart contracts. However, their inherent vulnerabilities and susceptibility to bugs have led to significant financial losses, underscoring the challenges in securing smart contracts. While traditional auditing methods are crucial, they often fall short in addressing the increasing complexity and volume of smart contracts. Recent advancements in Large Language Models (LLMs) offer promising solutions for enhancing software auditing by automatically identifying security vulnerabilities. Despite their potential, the practical application of these models is hindered by substantial computational demands. This paper investigates the feasibility of using smaller, fine-tuned models to achieve comparable or even superior results in smart contract auditing. We introduce the FTSmartAudit framework, which is designed to develop cost-effective, specialized models for smart contract auditing through the fine-tuning of LLMs. Our contributions include: (1) a single-task learning framework that streamlines data preparation, training, evaluation, and continuous learning; (2) a robust dataset generation method utilizing domain-special knowledge distillation to produce high-quality datasets from advanced models like GPT-4o; (3) an adaptive learning strategy to maintain model accuracy and robustness; (4) the proven effectiveness of fine-tuned models in detecting specific vulnerabilities and complex logical errors; and (5) a framework that can be extended to other domains requiring LLM solutions. Our experimental results demonstrate that smaller models can surpass state-of-the-art commercial models and tools in detecting vulnerabilities in smart contracts.
Abstract:As urban residents demand higher travel quality, vehicle dispatch has become a critical component of online ride-hailing services. However, current vehicle dispatch systems struggle to navigate the complexities of urban traffic dynamics, including unpredictable traffic conditions, diverse driver behaviors, and fluctuating supply and demand patterns. These challenges have resulted in travel difficulties for passengers in certain areas, while many drivers in other areas are unable to secure orders, leading to a decline in the overall quality of urban transportation services. To address these issues, this paper introduces GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching. GARLIC utilizes multiview graphs to capture hierarchical traffic states, and learns a dynamic reward function that accounts for individual driving behaviors. The framework further integrates a GPT model trained with a custom loss function to enable high-precision predictions and optimize dispatching policies in real-world scenarios. Experiments conducted on two real-world datasets demonstrate that GARLIC effectively aligns with driver behaviors while reducing the empty load rate of vehicles.
Abstract:Understanding is a crucial yet elusive concept in artificial intelligence (AI). This work proposes a framework for analyzing understanding based on the notion of composability. Given any subject (e.g., a person or an AI), we suggest characterizing its understanding of an object in terms of its ability to process (compose) relevant inputs into satisfactory outputs from the perspective of a verifier. This highly universal framework can readily apply to non-human subjects, such as AIs, non-human animals, and institutions. Further, we propose methods for analyzing the inputs that enhance output quality in compositions, which we call catalysts. We show how the structure of a subject can be revealed by analyzing its components that act as catalysts and argue that a subject's learning ability can be regarded as its ability to compose inputs into its inner catalysts. Finally we examine the importance of learning ability for AIs to attain general intelligence. Our analysis indicates that models capable of generating outputs that can function as their own catalysts, such as language models, establish a foundation for potentially overcoming existing limitations in AI understanding.
Abstract:Reranking is a critical component in recommender systems, playing an essential role in refining the output of recommendation algorithms. Traditional reranking models have focused predominantly on accuracy, but modern applications demand consideration of additional criteria such as diversity and fairness. Existing reranking approaches often fail to harmonize these diverse criteria effectively at the model level. Moreover, these models frequently encounter challenges with scalability and personalization due to their complexity and the varying significance of different reranking criteria in diverse scenarios. In response, we introduce a comprehensive reranking framework enhanced by LLM, designed to seamlessly integrate various reranking criteria while maintaining scalability and facilitating personalized recommendations. This framework employs a fully connected graph structure, allowing the LLM to simultaneously consider multiple aspects such as accuracy, diversity, and fairness through a coherent Chain-of-Thought (CoT) process. A customizable input mechanism is also integrated, enabling the tuning of the language model's focus to meet specific reranking needs. We validate our approach using three popular public datasets, where our framework demonstrates superior performance over existing state-of-the-art reranking models in balancing multiple criteria. The code for this implementation is publicly available.