DJI Innovations Inc
Abstract:Although deep neural networks have demonstrated significant success due to their powerful expressiveness, most models struggle to meet practical requirements for uncertainty estimation. Concurrently, the entangled nature of deep neural networks leads to a multifaceted problem, where various localized explanation techniques reveal that multiple unrelated features influence the decisions, thereby undermining interpretability. To address these challenges, we develop a Bayesian Non-negative Decision Layer (BNDL), which reformulates deep neural networks as a conditional Bayesian non-negative factor analysis. By leveraging stochastic latent variables, the BNDL can model complex dependencies and provide robust uncertainty estimation. Moreover, the sparsity and non-negativity of the latent variables encourage the model to learn disentangled representations and decision layers, thereby improving interpretability. We also offer theoretical guarantees that BNDL can achieve effective disentangled learning. In addition, we developed a corresponding variational inference method utilizing a Weibull variational inference network to approximate the posterior distribution of the latent variables. Our experimental results demonstrate that with enhanced disentanglement capabilities, BNDL not only improves the model's accuracy but also provides reliable uncertainty estimation and improved interpretability.
Abstract:Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by grounding responses with retrieved information. As an emerging paradigm, Agentic RAG further enhances this process by introducing autonomous LLM agents into the information seeking process. However, existing benchmarks fall short in evaluating such systems, as they are confined to a static retrieval environment with a fixed, limited corpus} and simple queries that fail to elicit agentic behavior. Moreover, their evaluation protocols assess information seeking effectiveness by pre-defined gold sets of documents, making them unsuitable for the open-ended and dynamic nature of real-world web environments. To bridge this gap, we present InfoDeepSeek, a new benchmark with challenging questions designed for assessing agentic information seeking in real-world, dynamic web environments. We propose a systematic methodology for constructing challenging queries satisfying the criteria of determinacy, difficulty, and diversity. Based on this, we develop the first evaluation framework tailored to dynamic agentic information seeking, including fine-grained metrics about the accuracy, utility, and compactness of information seeking outcomes. Through extensive experiments across LLMs, search engines, and question types, InfoDeepSeek reveals nuanced agent behaviors and offers actionable insights for future research.
Abstract:Concept Bottleneck Models (CBMs) try to make the decision-making process transparent by exploring an intermediate concept space between the input image and the output prediction. Existing CBMs just learn coarse-grained relations between the whole image and the concepts, less considering local image information, leading to two main drawbacks: i) they often produce spurious visual-concept relations, hence decreasing model reliability; and ii) though CBMs could explain the importance of every concept to the final prediction, it is still challenging to tell which visual region produces the prediction. To solve these problems, this paper proposes a Disentangled Optimal Transport CBM (DOT-CBM) framework to explore fine-grained visual-concept relations between local image patches and concepts. Specifically, we model the concept prediction process as a transportation problem between the patches and concepts, thereby achieving explicit fine-grained feature alignment. We also incorporate orthogonal projection losses within the modality to enhance local feature disentanglement. To further address the shortcut issues caused by statistical biases in the data, we utilize the visual saliency map and concept label statistics as transportation priors. Thus, DOT-CBM can visualize inversion heatmaps, provide more reliable concept predictions, and produce more accurate class predictions. Comprehensive experiments demonstrate that our proposed DOT-CBM achieves SOTA performance on several tasks, including image classification, local part detection and out-of-distribution generalization.
Abstract:Classical Chinese, as the core carrier of Chinese culture, plays a crucial role in the inheritance and study of ancient literature. However, existing natural language processing models primarily optimize for Modern Chinese, resulting in inadequate performance on Classical Chinese. This paper presents a comprehensive solution for Classical Chinese language processing. By continuing pre-training and instruction fine-tuning on the LLaMA3-8B-Chinese model, we construct a large language model, WenyanGPT, which is specifically designed for Classical Chinese tasks. Additionally, we develop an evaluation benchmark dataset, WenyanBENCH. Experimental results on WenyanBENCH demonstrate that WenyanGPT significantly outperforms current advanced LLMs in various Classical Chinese tasks. We make the model's training data, instruction fine-tuning data\footnote, and evaluation benchmark dataset publicly available to promote further research and development in the field of Classical Chinese processing.
Abstract:Recent advancements in Transformer-based architectures have led to impressive breakthroughs in natural language processing tasks, with models such as GPT-4, Claude, and Gemini demonstrating human-level reasoning abilities. However, despite their high performance, concerns remain about the inherent limitations of these models, especially when it comes to learning basic logical functions. While complexity-theoretic analyses indicate that Transformers can represent simple logic functions (e.g., $\mathsf{AND}$, $\mathsf{OR}$, and majority gates) by its nature of belonging to the $\mathsf{TC}^0$ class, these results assume ideal parameter settings and do not account for the constraints imposed by gradient descent-based training methods. In this work, we investigate whether Transformers can truly learn simple majority functions when trained using gradient-based methods. We focus on a simplified variant of the Transformer architecture and consider both $n=\mathrm{poly}(d)$ and $n=\exp(\Omega(d))$ number of training samples, where each sample is a $d$-size binary string paired with the output of a basic majority function. Our analysis demonstrates that even after $\mathrm{poly}(d)$ gradient queries, the generalization error of the Transformer model still remains substantially large, growing exponentially with $d$. This work highlights fundamental optimization challenges in training Transformers for the simplest logical reasoning tasks and provides new insights into their theoretical limitations.
Abstract:The rapid advancement of multi-modal language models (MLLMs) like GPT-4o has propelled the development of Omni language models, designed to process and proactively respond to continuous streams of multi-modal data. Despite their potential, evaluating their real-world interactive capabilities in streaming video contexts remains a formidable challenge. In this work, we introduce OmniMMI, a comprehensive multi-modal interaction benchmark tailored for OmniLLMs in streaming video contexts. OmniMMI encompasses over 1,121 videos and 2,290 questions, addressing two critical yet underexplored challenges in existing video benchmarks: streaming video understanding and proactive reasoning, across six distinct subtasks. Moreover, we propose a novel framework, Multi-modal Multiplexing Modeling (M4), designed to enable an inference-efficient streaming model that can see, listen while generating.
Abstract:A fundamental challenge in Visual Autoregressive models is the substantial memory overhead required during inference to store previously generated representations. Despite various attempts to mitigate this issue through compression techniques, prior works have not explicitly formalized the problem of KV-cache compression in this context. In this work, we take the first step in formally defining the KV-cache compression problem for Visual Autoregressive transformers. We then establish a fundamental negative result, proving that any mechanism for sequential visual token generation under attention-based architectures must use at least $\Omega(n^2 d)$ memory, when $d = \Omega(\log n)$, where $n$ is the number of tokens generated and $d$ is the embedding dimensionality. This result demonstrates that achieving truly sub-quadratic memory usage is impossible without additional structural constraints. Our proof is constructed via a reduction from a computational lower bound problem, leveraging randomized embedding techniques inspired by dimensionality reduction principles. Finally, we discuss how sparsity priors on visual representations can influence memory efficiency, presenting both impossibility results and potential directions for mitigating memory overhead.
Abstract:Many large-scale systems rely on high-quality deep representations (embeddings) to facilitate tasks like retrieval, search, and generative modeling. Matryoshka Representation Learning (MRL) recently emerged as a solution for adaptive embedding lengths, but it requires full model retraining and suffers from noticeable performance degradations at short lengths. In this paper, we show that sparse coding offers a compelling alternative for achieving adaptive representation with minimal overhead and higher fidelity. We propose Contrastive Sparse Representation (CSR), a method that sparsifies pre-trained embeddings into a high-dimensional but selectively activated feature space. By leveraging lightweight autoencoding and task-aware contrastive objectives, CSR preserves semantic quality while allowing flexible, cost-effective inference at different sparsity levels. Extensive experiments on image, text, and multimodal benchmarks demonstrate that CSR consistently outperforms MRL in terms of both accuracy and retrieval speed-often by large margins-while also cutting training time to a fraction of that required by MRL. Our results establish sparse coding as a powerful paradigm for adaptive representation learning in real-world applications where efficiency and fidelity are both paramount. Code is available at https://github.com/neilwen987/CSR_Adaptive_Rep
Abstract:In today's digital landscape, Deep Recommender Systems (DRS) play a crucial role in navigating and customizing online content for individual preferences. However, conventional methods, which mainly depend on single recommendation task, scenario, data modality and user behavior, are increasingly seen as insufficient due to their inability to accurately reflect users' complex and changing preferences. This gap underscores the need for joint modeling approaches, which are central to overcoming these limitations by integrating diverse tasks, scenarios, modalities, and behaviors in the recommendation process, thus promising significant enhancements in recommendation precision, efficiency, and customization. In this paper, we comprehensively survey the joint modeling methods in recommendations. We begin by defining the scope of joint modeling through four distinct dimensions: multi-task, multi-scenario, multi-modal, and multi-behavior modeling. Subsequently, we examine these methods in depth, identifying and summarizing their underlying paradigms based on the latest advancements and potential research trajectories. Ultimately, we highlight several promising avenues for future exploration in joint modeling for recommendations and provide a concise conclusion to our findings.
Abstract:Vision Language Models (VLMs) have achieved remarkable success in a wide range of vision applications of increasing complexity and scales, yet choosing the right VLM model size involves a trade-off between response quality and cost. While smaller VLMs are cheaper to run, they typically produce responses only marginally better than random guessing on benchmarks such as MMMU. In this paper, we propose Cache of Thought (CoT), a master apprentice framework for collaborative inference between large and small VLMs. CoT manages high quality query results from large VLMs (master) in a cache, which are then selected via a novel multi modal retrieval and in-context learning to aid the performance of small VLMs (apprentice). We extensively evaluate CoT on various widely recognized and challenging general VQA benchmarks, and show that CoT increases overall VQA performance by up to 7.7% under the same budget, and specifically boosts the performance of apprentice VLMs by up to 36.6%.