and Other Contributors
Abstract:In this paper, we enhance the omnidirectional coverage performance of tri-directional coil-based magnetic induction communication (TC-MIC) and reduce the pathloss with a joint transmit and receive magnetic beamforming method. An iterative optimization algorithm incorporating the transmit current vector and receive weight matrix is developed to minimize the pathloss under constant transmit power constraints. We formulate the mathematical models for the mutual inductance of tri-directional coils, receive power, and pathloss. The optimization problem is decomposed into Rayleigh quotient extremum optimization for transmit currents and Cauchy-Schwarz inequality-constrained optimization for receive weights, with an alternating iterative algorithm to approach the global optimum. Numerical results demonstrate that the proposed algorithm converges within an average of 13.6 iterations, achieving up to 54% pathloss reduction compared with equal power allocation schemes. The joint optimization approach exhibits superior angular robustness, maintaining pathloss fluctuation smaller than 2 dB, and reducing fluctuation of pathloss by approximately 45% compared with single-parameter optimization methods.
Abstract:The surgence of Mixture of Experts (MoE) in Large Language Models promises a small price of execution cost for a much larger model parameter count and learning capacity, because only a small fraction of parameters are activated for each input token. However, it is commonly observed that some experts are activated far more often than others, leading to system inefficiency when running the experts on different devices in parallel. Therefore, we introduce Mixture of Grouped Experts (MoGE), which groups the experts during selection and balances the expert workload better than MoE in nature. It constrains tokens to activate an equal number of experts within each predefined expert group. When a model execution is distributed on multiple devices, this architectural design ensures a balanced computational load across devices, significantly enhancing throughput, particularly for the inference phase. Further, we build Pangu Pro MoE on Ascend NPUs, a sparse model based on MoGE with 72 billion total parameters, 16 billion of which are activated for each token. The configuration of Pangu Pro MoE is optimized for Ascend 300I Duo and 800I A2 through extensive system simulation studies. Our experiments indicate that MoGE indeed leads to better expert load balancing and more efficient execution for both model training and inference on Ascend NPUs. The inference performance of Pangu Pro MoE achieves 1148 tokens/s per card and can be further improved to 1528 tokens/s per card by speculative acceleration, outperforming comparable 32B and 72B Dense models. Furthermore, we achieve an excellent cost-to-performance ratio for model inference on Ascend 300I Duo. Our studies show that Ascend NPUs are capable of training Pangu Pro MoE with massive parallelization to make it a leading model within the sub-100B total parameter class, outperforming prominent open-source models like GLM-Z1-32B and Qwen3-32B.
Abstract:Click-through rate (CTR) prediction is a critical task in online advertising and recommender systems, relying on effective modeling of feature interactions. Explicit interactions capture predefined relationships, such as inner products, but often suffer from data sparsity, while implicit interactions excel at learning complex patterns through non-linear transformations but lack inductive biases for efficient low-order modeling. Existing two-stream architectures integrate these paradigms but face challenges such as limited information sharing, gradient imbalance, and difficulty preserving low-order signals in sparse CTR data. We propose a novel framework, Dynamic Low-Order-Aware Fusion (DLF), which addresses these limitations through two key components: a Residual-Aware Low-Order Interaction Network (RLI) and a Network-Aware Attention Fusion Module (NAF). RLI explicitly preserves low-order signals while mitigating redundancy from residual connections, and NAF dynamically integrates explicit and implicit representations at each layer, enhancing information sharing and alleviating gradient imbalance. Together, these innovations balance low-order and high-order interactions, improving model expressiveness. Extensive experiments on public datasets demonstrate that DLF achieves state-of-the-art performance in CTR prediction, addressing key limitations of existing models. The implementation is publicly available at https://github.com/USTC-StarTeam/DLF.
Abstract:Fluid antenna systems (FAS) offer enhanced spatial diversity for next-generation wireless systems. However, acquiring accurate channel state information (CSI) remains challenging due to the large number of reconfigurable ports and the limited availability of radio-frequency (RF) chains -- particularly in high-dimensional FAS scenarios. To address this challenge, we propose an efficient posterior sampling-based channel estimator that leverages a diffusion model (DM) with a simplified U-Net architecture to capture the spatial correlation structure of two-dimensional FAS channels. The DM is initially trained offline in an unsupervised way and then applied online as a learned implicit prior to reconstruct CSI from partial observations via posterior sampling through a denoising diffusion restoration model (DDRM). To accelerate the online inference, we introduce a skipped sampling strategy that updates only a subset of latent variables during the sampling process, thereby reducing the computational cost with minimal accuracy degradation. Simulation results demonstrate that the proposed approach achieves significantly higher estimation accuracy and over 20x speedup compared to state-of-the-art compressed sensing-based methods, highlighting its potential for practical deployment in high-dimensional FAS.
Abstract:The fluid antenna system (FAS) has emerged as a disruptive technology, offering unprecedented degrees of freedom (DoF) for wireless communication systems. However, optimizing fluid antenna (FA) positions entails significant computational costs, especially when the number of FAs is large. To address this challenge, we introduce a decentralized baseband processing (DBP) architecture to FAS, which partitions the FA array into clusters and enables parallel processing. Based on the DBP architecture, we formulate a weighted sum rate (WSR) maximization problem through joint beamforming and FA position design for FA-assisted multiuser multiple-input multiple-output (MU-MIMO) systems. To solve the WSR maximization problem, we propose a novel decentralized block coordinate ascent (BCA)-based algorithm that leverages matrix fractional programming (FP) and majorization-minimization (MM) methods. The proposed decentralized algorithm achieves low computational, communication, and storage costs, thus unleashing the potential of the DBP architecture. Simulation results show that our proposed algorithm under the DBP architecture reduces computational time by over 70% compared to centralized architectures with negligible WSR performance loss.
Abstract:Sparse large language models (LLMs) with Mixture of Experts (MoE) and close to a trillion parameters are dominating the realm of most capable language models. However, the massive model scale poses significant challenges for the underlying software and hardware systems. In this paper, we aim to uncover a recipe to harness such scale on Ascend NPUs. The key goals are better usage of the computing resources under the dynamic sparse model structures and materializing the expected performance gain on the actual hardware. To select model configurations suitable for Ascend NPUs without repeatedly running the expensive experiments, we leverage simulation to compare the trade-off of various model hyperparameters. This study led to Pangu Ultra MoE, a sparse LLM with 718 billion parameters, and we conducted experiments on the model to verify the simulation results. On the system side, we dig into Expert Parallelism to optimize the communication between NPU devices to reduce the synchronization overhead. We also optimize the memory efficiency within the devices to further reduce the parameter and activation management overhead. In the end, we achieve an MFU of 30.0% when training Pangu Ultra MoE, with performance comparable to that of DeepSeek R1, on 6K Ascend NPUs, and demonstrate that the Ascend system is capable of harnessing all the training stages of the state-of-the-art language models. Extensive experiments indicate that our recipe can lead to efficient training of large-scale sparse language models with MoE. We also study the behaviors of such models for future reference.
Abstract:Aiming at the group decision - making problem with multi - objective attributes, this study proposes a group decision - making system that integrates fuzzy inference and Bayesian network. A fuzzy rule base is constructed by combining threshold values, membership functions, expert experience, and domain knowledge to address quantitative challenges such as scale differences and expert linguistic variables. A hierarchical Bayesian network is designed, featuring a directed acyclic graph with nodes selected by experts, and maximum likelihood estimation is used to dynamically optimize the conditional probability table, modeling the nonlinear correlations among multidimensional indices for posterior probability aggregation. In a comprehensive student evaluation case, this method is compared with the traditional weighted scoring approach. The results indicate that the proposed method demonstrates effectiveness in both rule criterion construction and ranking consistency, with a classification accuracy of 86.0% and an F1 value improvement of 53.4% over the traditional method. Additionally, computational experiments on real - world datasets across various group decision scenarios assess the method's performance and robustness, providing evidence of its reliability in diverse contexts.
Abstract:In recommendation systems, the traditional multi-stage paradigm, which includes retrieval and ranking, often suffers from information loss between stages and diminishes performance. Recent advances in generative models, inspired by natural language processing, suggest the potential for unifying these stages to mitigate such loss. This paper presents the Unified Generative Recommendation Framework (UniGRF), a novel approach that integrates retrieval and ranking into a single generative model. By treating both stages as sequence generation tasks, UniGRF enables sufficient information sharing without additional computational costs, while remaining model-agnostic. To enhance inter-stage collaboration, UniGRF introduces a ranking-driven enhancer module that leverages the precision of the ranking stage to refine retrieval processes, creating an enhancement loop. Besides, a gradient-guided adaptive weighter is incorporated to dynamically balance the optimization of retrieval and ranking, ensuring synchronized performance improvements. Extensive experiments demonstrate that UniGRF significantly outperforms existing models on benchmark datasets, confirming its effectiveness in facilitating information transfer. Ablation studies and further experiments reveal that UniGRF not only promotes efficient collaboration between stages but also achieves synchronized optimization. UniGRF provides an effective, scalable, and compatible framework for generative recommendation systems.
Abstract:The 6-Degree of Freedom (DoF) grasp method based on point clouds has shown significant potential in enabling robots to grasp target objects. However, most existing methods are based on the point clouds (2.5D points) generated from single-view depth images. These point clouds only have one surface side of the object providing incomplete geometry information, which mislead the grasping algorithm to judge the shape of the target object, resulting in low grasping accuracy. Humans can accurately grasp objects from a single view by leveraging their geometry experience to estimate object shapes. Inspired by humans, we propose a novel 6-DoF grasping framework that converts the point completion results as object shape features to train the 6-DoF grasp network. Here, point completion can generate approximate complete points from the 2.5D points similar to the human geometry experience, and converting it as shape features is the way to utilize it to improve grasp efficiency. Furthermore, due to the gap between the network generation and actual execution, we integrate a score filter into our framework to select more executable grasp proposals for the real robot. This enables our method to maintain a high grasp quality in any camera viewpoint. Extensive experiments demonstrate that utilizing complete point features enables the generation of significantly more accurate grasp proposals and the inclusion of a score filter greatly enhances the credibility of real-world robot grasping. Our method achieves a 17.8\% success rate higher than the state-of-the-art method in real-world experiments.
Abstract:We present Pangu Ultra, a Large Language Model (LLM) with 135 billion parameters and dense Transformer modules trained on Ascend Neural Processing Units (NPUs). Although the field of LLM has been witnessing unprecedented advances in pushing the scale and capability of LLM in recent years, training such a large-scale model still involves significant optimization and system challenges. To stabilize the training process, we propose depth-scaled sandwich normalization, which effectively eliminates loss spikes during the training process of deep models. We pre-train our model on 13.2 trillion diverse and high-quality tokens and further enhance its reasoning capabilities during post-training. To perform such large-scale training efficiently, we utilize 8,192 Ascend NPUs with a series of system optimizations. Evaluations on multiple diverse benchmarks indicate that Pangu Ultra significantly advances the state-of-the-art capabilities of dense LLMs such as Llama 405B and Mistral Large 2, and even achieves competitive results with DeepSeek-R1, whose sparse model structure contains much more parameters. Our exploration demonstrates that Ascend NPUs are capable of efficiently and effectively training dense models with more than 100 billion parameters. Our model and system will be available for our commercial customers.