and Other Contributors
Abstract:One of the most compelling features of global discrete diffusion language models is their global bidirectional contextual capability. However, existing block-based diffusion studies tend to introduce autoregressive priors, which, while offering benefits, can cause models to lose this global coherence at the macro level. To regain global contextual understanding while preserving the advantages of the semi-autoregressive paradigm, we propose Diffusion in Diffusion, a 'draft-then-refine' framework designed to overcome the irreversibility and myopia problems inherent in block diffusion models. Our approach first employs block diffusion to generate rapid drafts using small blocks, then refines these drafts through global bidirectional diffusion with a larger bidirectional receptive field. We utilize snapshot confidence remasking to identify the most critical tokens that require modification, and apply mix-scale training to expand the block diffusion model's global capabilities. Empirical results demonstrate that our approach sets a new benchmark for discrete diffusion models on the OpenWebText dataset. Using only 26% of the fine-tuning budget of baseline models, we reduce generative perplexity from 25.7 to 21.9, significantly narrowing the performance gap with autoregressive models.
Abstract:The paradigm of Large Language Models (LLMs) is currently defined by auto-regressive (AR) architectures, which generate text through a sequential ``brick-by-brick'' process. Despite their success, AR models are inherently constrained by a causal bottleneck that limits global structural foresight and iterative refinement. Diffusion Language Models (DLMs) offer a transformative alternative, conceptualizing text generation as a holistic, bidirectional denoising process akin to a sculptor refining a masterpiece. However, the potential of DLMs remains largely untapped as they are frequently confined within AR-legacy infrastructures and optimization frameworks. In this Perspective, we identify ten fundamental challenges ranging from architectural inertia and gradient sparsity to the limitations of linear reasoning that prevent DLMs from reaching their ``GPT-4 moment''. We propose a strategic roadmap organized into four pillars: foundational infrastructure, algorithmic optimization, cognitive reasoning, and unified multimodal intelligence. By shifting toward a diffusion-native ecosystem characterized by multi-scale tokenization, active remasking, and latent thinking, we can move beyond the constraints of the causal horizon. We argue that this transition is essential for developing next-generation AI capable of complex structural reasoning, dynamic self-correction, and seamless multimodal integration.
Abstract:Frontier LLMs are increasingly utilised across academia, society and industry. A commonly used unit for comparing models, their inputs and outputs, and estimating inference pricing is the token. In general, tokens are used as a stable currency, assumed to be broadly consistent across tokenizers and contexts, enabling direct comparisons. However, tokenization varies significantly across models and domains of text, making naive interpretation of token counts problematic. We quantify this variation by providing a comprehensive empirical analysis of tokenization, exploring the compression of sequences to tokens across different distributions of textual data. Our analysis challenges commonly held heuristics about token lengths, finding them to be overly simplistic. We hope the insights of our study add clarity and intuition toward tokenization in contemporary LLMs.
Abstract:Vector quantization (VQ) is a prevalent and fundamental technique that discretizes continuous feature vectors by approximating them using a codebook. As the diversity and complexity of data and models continue to increase, there is an urgent need for high-capacity, yet more compact VQ methods. This paper aims to reconcile this conflict by presenting a new approach called LooC, which utilizes an effective Low-dimensional codebook for Compositional vector quantization. Firstly, LooC introduces a parameter-efficient codebook by reframing the relationship between codevectors and feature vectors, significantly expanding its solution space. Instead of individually matching codevectors with feature vectors, LooC treats them as lower-dimensional compositional units within feature vectors and combines them, resulting in a more compact codebook with improved performance. Secondly, LooC incorporates a parameter-free extrapolation-by-interpolation mechanism to enhance and smooth features during the VQ process, which allows for better preservation of details and fidelity in feature approximation. The design of LooC leads to full codebook usage, effectively utilizing the compact codebook while avoiding the problem of collapse. Thirdly, LooC can serve as a plug-and-play module for existing methods for different downstream tasks based on VQ. Finally, extensive evaluations on different tasks, datasets, and architectures demonstrate that LooC outperforms existing VQ methods, achieving state-of-the-art performance with a significantly smaller codebook.
Abstract:The rapid scaling of Large Language Models (LLMs) has achieved remarkable performance, but it also leads to prohibitive memory costs. Existing parameter-efficient approaches such as pruning and quantization mainly compress pretrained models without enhancing architectural capacity, thereby hitting the representational ceiling of the base model. In this work, we propose VersatileFFN, a novel feed-forward network (FFN) that enables flexible reuse of parameters in both width and depth dimensions within a fixed parameter budget. Inspired by the dual-process theory of cognition, VersatileFFN comprises two adaptive pathways: a width-versatile path that generates a mixture of sub-experts from a single shared FFN, mimicking sparse expert routing without increasing parameters, and a depth-versatile path that recursively applies the same FFN to emulate deeper processing for complex tokens. A difficulty-aware gating dynamically balances the two pathways, steering "easy" tokens through the efficient width-wise route and allocating deeper iterative refinement to "hard" tokens. Crucially, both pathways reuse the same parameters, so all additional capacity comes from computation rather than memory. Experiments across diverse benchmarks and model scales demonstrate the effectiveness of the method. The code will be available at https://github.com/huawei-noah/noah-research/tree/master/VersatileFFN.
Abstract:In this paper, we present JoVA, a unified framework for joint video-audio generation. Despite recent encouraging advances, existing methods face two critical limitations. First, most existing approaches can only generate ambient sounds and lack the capability to produce human speech synchronized with lip movements. Second, recent attempts at unified human video-audio generation typically rely on explicit fusion or modality-specific alignment modules, which introduce additional architecture design and weaken the model simplicity of the original transformers. To address these issues, JoVA employs joint self-attention across video and audio tokens within each transformer layer, enabling direct and efficient cross-modal interaction without the need for additional alignment modules. Furthermore, to enable high-quality lip-speech synchronization, we introduce a simple yet effective mouth-area loss based on facial keypoint detection, which enhances supervision on the critical mouth region during training without compromising architectural simplicity. Extensive experiments on benchmarks demonstrate that JoVA outperforms or is competitive with both unified and audio-driven state-of-the-art methods in lip-sync accuracy, speech quality, and overall video-audio generation fidelity. Our results establish JoVA as an elegant framework for high-quality multimodal generation.
Abstract:Multimodal large language models (MLLMs) have achieved strong performance on vision-language tasks, yet often suffer from inefficiencies due to redundant visual tokens. Existing token merging methods reduce sequence length but frequently disrupt spatial layouts and temporal continuity by disregarding positional relationships. In this work, we propose a novel encoding operator dubbed as \textbf{P}ositional \textbf{P}reservation \textbf{E}mbedding (\textbf{PPE}), which has the main hallmark of preservation of spatiotemporal structure during visual token compression. PPE explicitly introduces the disentangled encoding of 3D positions in the token dimension, enabling each compressed token to encapsulate different positions from multiple original tokens. Furthermore, we show that PPE can effectively support cascade clustering -- a progressive token compression strategy that leads to better performance retention. PPE is a parameter-free and generic operator that can be seamlessly integrated into existing token merging methods without any adjustments. Applied to state-of-the-art token merging framework, PPE achieves consistent improvements of $2\%\sim5\%$ across multiple vision-language benchmarks, including MMBench (general vision understanding), TextVQA (layout understanding) and VideoMME (temporal understanding). These results demonstrate that preserving positional cues is critical for efficient and effective MLLM reasoning.
Abstract:The rapid advancement of large language models (LLMs) has significantly advanced the capabilities of artificial intelligence across various domains. However, their massive scale and high computational costs render them unsuitable for direct deployment in resource-constrained edge environments. This creates a critical need for high-performance small models that can operate efficiently at the edge. Yet, after pre-training alone, these smaller models often fail to meet the performance requirements of complex tasks. To bridge this gap, we introduce a systematic post-training pipeline that efficiently enhances small model accuracy. Our post training pipeline consists of curriculum-based supervised fine-tuning (SFT) and offline on-policy knowledge distillation. The resulting instruction-tuned model achieves state-of-the-art performance among billion-parameter models, demonstrating strong generalization under strict hardware constraints while maintaining competitive accuracy across a variety of tasks. This work provides a practical and efficient solution for developing high-performance language models on Ascend edge devices.




Abstract:Category discovery (CD) is an emerging open-world learning task, which aims at automatically categorizing unlabelled data containing instances from unseen classes, given some labelled data from seen classes. This task has attracted significant attention over the years and leads to a rich body of literature trying to address the problem from different perspectives. In this survey, we provide a comprehensive review of the literature, and offer detailed analysis and in-depth discussion on different methods. Firstly, we introduce a taxonomy for the literature by considering two base settings, namely novel category discovery (NCD) and generalized category discovery (GCD), and several derived settings that are designed to address the extra challenges in different real-world application scenarios, including continual category discovery, skewed data distribution, federated category discovery, etc. Secondly, for each setting, we offer a detailed analysis of the methods encompassing three fundamental components, representation learning, label assignment, and estimation of class number. Thirdly, we benchmark all the methods and distill key insights showing that large-scale pretrained backbones, hierarchical and auxiliary cues, and curriculum-style training are all beneficial for category discovery, while challenges remain in the design of label assignment, the estimation of class numbers, and scaling to complex multi-object scenarios.Finally, we discuss the key insights from the literature so far and point out promising future research directions. We compile a living survey of the category discovery literature at \href{https://github.com/Visual-AI/Category-Discovery}{https://github.com/Visual-AI/Category-Discovery}.




Abstract:Drag-based image editing has emerged as a powerful paradigm for intuitive image manipulation. However, existing approaches predominantly rely on manipulating the latent space of generative models, leading to limited precision, delayed feedback, and model-specific constraints. Accordingly, we present Inpaint4Drag, a novel framework that decomposes drag-based editing into pixel-space bidirectional warping and image inpainting. Inspired by elastic object deformation in the physical world, we treat image regions as deformable materials that maintain natural shape under user manipulation. Our method achieves real-time warping previews (0.01s) and efficient inpainting (0.3s) at 512x512 resolution, significantly improving the interaction experience compared to existing methods that require minutes per edit. By transforming drag inputs directly into standard inpainting formats, our approach serves as a universal adapter for any inpainting model without architecture modification, automatically inheriting all future improvements in inpainting technology. Extensive experiments demonstrate that our method achieves superior visual quality and precise control while maintaining real-time performance. Project page: https://visual-ai.github.io/inpaint4drag/