Abstract:The dream to create AI assistants as capable and versatile as the fictional J.A.R.V.I.S from Iron Man has long captivated imaginations. With the evolution of (multi-modal) large language models ((M)LLMs), this dream is closer to reality, as (M)LLM-based Agents using computing devices (e.g., computers and mobile phones) by operating within the environments and interfaces (e.g., Graphical User Interface (GUI)) provided by operating systems (OS) to automate tasks have significantly advanced. This paper presents a comprehensive survey of these advanced agents, designated as OS Agents. We begin by elucidating the fundamentals of OS Agents, exploring their key components including the environment, observation space, and action space, and outlining essential capabilities such as understanding, planning, and grounding. We then examine methodologies for constructing OS Agents, focusing on domain-specific foundation models and agent frameworks. A detailed review of evaluation protocols and benchmarks highlights how OS Agents are assessed across diverse tasks. Finally, we discuss current challenges and identify promising directions for future research, including safety and privacy, personalization and self-evolution. This survey aims to consolidate the state of OS Agents research, providing insights to guide both academic inquiry and industrial development. An open-source GitHub repository is maintained as a dynamic resource to foster further innovation in this field. We present a 9-page version of our work, accepted by ACL 2025, to provide a concise overview to the domain.
Abstract:Large language models enable agents to autonomously perform tasks in open web environments. However, as hidden threats within the web evolve, web agents face the challenge of balancing task performance with emerging risks during long-sequence operations. Although this challenge is critical, current research remains limited to single-objective optimization or single-turn scenarios, lacking the capability for collaborative optimization of both safety and utility in web environments. To address this gap, we propose HarmonyGuard, a multi-agent collaborative framework that leverages policy enhancement and objective optimization to jointly improve both utility and safety. HarmonyGuard features a multi-agent architecture characterized by two fundamental capabilities: (1) Adaptive Policy Enhancement: We introduce the Policy Agent within HarmonyGuard, which automatically extracts and maintains structured security policies from unstructured external documents, while continuously updating policies in response to evolving threats. (2) Dual-Objective Optimization: Based on the dual objectives of safety and utility, the Utility Agent integrated within HarmonyGuard performs the Markovian real-time reasoning to evaluate the objectives and utilizes metacognitive capabilities for their optimization. Extensive evaluations on multiple benchmarks show that HarmonyGuard improves policy compliance by up to 38% and task completion by up to 20% over existing baselines, while achieving over 90% policy compliance across all tasks. Our project is available here: https://github.com/YurunChen/HarmonyGuard.
Abstract:Diffusion Models have shown remarkable proficiency in image and video synthesis. As model size and latency increase limit user experience, hybrid edge-cloud collaborative framework was recently proposed to realize fast inference and high-quality generation, where the cloud model initiates high-quality semantic planning and the edge model expedites later-stage refinement. However, excessive cloud denoising prolongs inference time, while insufficient steps cause semantic ambiguity, leading to inconsistency in edge model output. To address these challenges, we propose EC-Diff that accelerates cloud inference through gradient-based noise estimation while identifying the optimal point for cloud-edge handoff to maintain generation quality. Specifically, we design a K-step noise approximation strategy to reduce cloud inference frequency by using noise gradients between steps and applying cloud inference periodically to adjust errors. Then we design a two-stage greedy search algorithm to efficiently find the optimal parameters for noise approximation and edge model switching. Extensive experiments demonstrate that our method significantly enhances generation quality compared to edge inference, while achieving up to an average $2\times$ speedup in inference compared to cloud inference. Video samples and source code are available at https://ec-diff.github.io/.
Abstract:Direct-satellite-to-device (DS2D) communication is emerging as a promising solution for global mobile service extension, leveraging the deployment of satellite constellations. However, the challenge of managing DS2D connectivity for multi-constellations becomes outstanding, including high interference and frequent handovers caused by multi-coverage overlap and rapid satellite movement. Moreover, existing approaches primarily operate within single-constellation shell, which inherently limits the ability to exploit the vast potential of multi-constellation connectivity provision, resulting in suboptimal DS2D service performances. To address these challenges, this article proposes a Constellation as a Service (CaaS) framework, which treats the entire multi-constellation infrastructure as a shared resource pool and dynamically forms optimal sub-constellations (SCs) for each DS2D service region. The formation of each SC integrates satellites from various orbits to provide tailored connectivity based on user demands, guided by two innovative strategies: predictive satellite beamforming using generative artificial intelligence (GenAI) and pre-configured handover path for efficient satellite access and mobility management. Simulation results demonstrate that CaaS significantly improves satellite service rates while reducing handover overhead, making it an efficient and continuable solution for managing DS2D connectivity in multi-constellation environments.
Abstract:With the rapid development of recommendation models and device computing power, device-based recommendation has become an important research area due to its better real-time performance and privacy protection. Previously, Transformer-based sequential recommendation models have been widely applied in this field because they outperform Recurrent Neural Network (RNN)-based recommendation models in terms of performance. However, as the length of interaction sequences increases, Transformer-based models introduce significantly more space and computational overhead compared to RNN-based models, posing challenges for device-based recommendation. To balance real-time performance and high performance on devices, we propose Device-Cloud \underline{Co}llaborative \underline{Corr}ection Framework for On-Device \underline{Rec}ommendation (CoCorrRec). CoCorrRec uses a self-correction network (SCN) to correct parameters with extremely low time cost. By updating model parameters during testing based on the input token, it achieves performance comparable to current optimal but more complex Transformer-based models. Furthermore, to prevent SCN from overfitting, we design a global correction network (GCN) that processes hidden states uploaded from devices and provides a global correction solution. Extensive experiments on multiple datasets show that CoCorrRec outperforms existing Transformer-based and RNN-based device recommendation models in terms of performance, with fewer parameters and lower FLOPs, thereby achieving a balance between real-time performance and high efficiency.
Abstract:Large language models (LLMs) have demonstrated exceptional performance across a variety of tasks. However, their substantial scale leads to significant computational resource consumption during inference, resulting in high costs. Consequently, edge device inference presents a promising solution. The primary challenges of edge inference include memory usage and inference speed. This paper introduces MNN-LLM, a framework specifically designed to accelerate the deployment of large language models on mobile devices. MNN-LLM addresses the runtime characteristics of LLMs through model quantization and DRAM-Flash hybrid storage, effectively reducing memory usage. It rearranges weights and inputs based on mobile CPU instruction sets and GPU characteristics while employing strategies such as multicore load balancing, mixed-precision floating-point operations, and geometric computations to enhance performance. Notably, MNN-LLM achieves up to a 8.6x speed increase compared to current mainstream LLM-specific frameworks.
Abstract:Recent advancements in large language models (LLMs) have demonstrated substantial progress in reasoning capabilities, such as DeepSeek-R1, which leverages rule-based reinforcement learning to enhance logical reasoning significantly. However, extending these achievements to multimodal large language models (MLLMs) presents critical challenges, which are frequently more pronounced for Multimodal Small Language Models (MSLMs) given their typically weaker foundational reasoning abilities: (1) the scarcity of high-quality multimodal reasoning datasets, (2) the degradation of reasoning capabilities due to the integration of visual processing, and (3) the risk that direct application of reinforcement learning may produce complex yet incorrect reasoning processes. To address these challenges, we design a novel framework Infi-MMR to systematically unlock the reasoning potential of MSLMs through a curriculum of three carefully structured phases and propose our multimodal reasoning model Infi-MMR-3B. The first phase, Foundational Reasoning Activation, leverages high-quality textual reasoning datasets to activate and strengthen the model's logical reasoning capabilities. The second phase, Cross-Modal Reasoning Adaptation, utilizes caption-augmented multimodal data to facilitate the progressive transfer of reasoning skills to multimodal contexts. The third phase, Multimodal Reasoning Enhancement, employs curated, caption-free multimodal data to mitigate linguistic biases and promote robust cross-modal reasoning. Infi-MMR-3B achieves both state-of-the-art multimodal math reasoning ability (43.68% on MathVerse testmini, 27.04% on MathVision test, and 21.33% on OlympiadBench) and general reasoning ability (67.2% on MathVista testmini).
Abstract:Diffusion models have become the mainstream architecture for text-to-image generation, achieving remarkable progress in visual quality and prompt controllability. However, current inference pipelines generally lack interpretable semantic supervision and correction mechanisms throughout the denoising process. Most existing approaches rely solely on post-hoc scoring of the final image, prompt filtering, or heuristic resampling strategies-making them ineffective in providing actionable guidance for correcting the generative trajectory. As a result, models often suffer from object confusion, spatial errors, inaccurate counts, and missing semantic elements, severely compromising prompt-image alignment and image quality. To tackle these challenges, we propose MLLM Semantic-Corrected Ping-Pong-Ahead Diffusion (PPAD), a novel framework that, for the first time, introduces a Multimodal Large Language Model (MLLM) as a semantic observer during inference. PPAD performs real-time analysis on intermediate generations, identifies latent semantic inconsistencies, and translates feedback into controllable signals that actively guide the remaining denoising steps. The framework supports both inference-only and training-enhanced settings, and performs semantic correction at only extremely few diffusion steps, offering strong generality and scalability. Extensive experiments demonstrate PPAD's significant improvements.
Abstract:Knowledge Tracing (KT) is a core component of Intelligent Tutoring Systems, modeling learners' knowledge state to predict future performance and provide personalized learning support. Traditional KT models assume that learners' learning abilities remain relatively stable over short periods or change in predictable ways based on prior performance. However, in reality, learners' abilities change irregularly due to factors like cognitive fatigue, motivation, and external stress -- a task introduced, which we refer to as Real-time Learning Pattern Adjustment (RLPA). Existing KT models, when faced with RLPA, lack sufficient adaptability, because they fail to timely account for the dynamic nature of different learners' evolving learning patterns. Current strategies for enhancing adaptability rely on retraining, which leads to significant overfitting and high time overhead issues. To address this, we propose Cuff-KT, comprising a controller and a generator. The controller assigns value scores to learners, while the generator generates personalized parameters for selected learners. Cuff-KT controllably adapts to data changes fast and flexibly without fine-tuning. Experiments on five datasets from different subjects demonstrate that Cuff-KT significantly improves the performance of five KT models with different structures under intra- and inter-learner shifts, with an average relative increase in AUC of 10% and 4%, respectively, at a negligible time cost, effectively tackling RLPA task. Our code and datasets are fully available at https://github.com/zyy-2001/Cuff-KT.
Abstract:Recent advances in large language models (LLMs) have enabled more semantic-aware recommendations through natural language generation. Existing LLM for recommendation (LLM4Rec) methods mostly operate in a System 1-like manner, relying on superficial features to match similar items based on click history, rather than reasoning through deeper behavioral logic. This often leads to superficial and erroneous recommendations. Motivated by this, we propose ThinkRec, a thinking-based framework that shifts LLM4Rec from System 1 to System 2 (rational system). Technically, ThinkRec introduces a thinking activation mechanism that augments item metadata with keyword summarization and injects synthetic reasoning traces, guiding the model to form interpretable reasoning chains that consist of analyzing interaction histories, identifying user preferences, and making decisions based on target items. On top of this, we propose an instance-wise expert fusion mechanism to reduce the reasoning difficulty. By dynamically assigning weights to expert models based on users' latent features, ThinkRec adapts its reasoning path to individual users, thereby enhancing precision and personalization. Extensive experiments on real-world datasets demonstrate that ThinkRec significantly improves the accuracy and interpretability of recommendations. Our implementations are available in anonymous Github: https://anonymous.4open.science/r/ThinkRec_LLM.