Abstract:Exponentially growing short video platforms (SVPs) face significant challenges in moderating content detrimental to users' mental health, particularly for minors. The dissemination of such content on SVPs can lead to catastrophic societal consequences. Although substantial efforts have been dedicated to moderating such content, existing methods suffer from critical limitations: (1) Manual review is prone to human bias and incurs high operational costs. (2) Automated methods, though efficient, lack nuanced content understanding, resulting in lower accuracy. (3) Industrial moderation regulations struggle to adapt to rapidly evolving trends due to long update cycles. In this paper, we annotate the first SVP content moderation benchmark with authentic user/reviewer feedback to fill the absence of benchmark in this field. Then we evaluate various methods on the benchmark to verify the existence of the aforementioned limitations. We further propose our common-law content moderation framework named KuaiMod to address these challenges. KuaiMod consists of three components: training data construction, offline adaptation, and online deployment & refinement. Leveraging large vision language model (VLM) and Chain-of-Thought (CoT) reasoning, KuaiMod adequately models video toxicity based on sparse user feedback and fosters dynamic moderation policy with rapid update speed and high accuracy. Offline experiments and large-scale online A/B test demonstrates the superiority of KuaiMod: KuaiMod achieves the best moderation performance on our benchmark. The deployment of KuaiMod reduces the user reporting rate by 20% and its application in video recommendation increases both Daily Active User (DAU) and APP Usage Time (AUT) on several Kuaishou scenarios. We have open-sourced our benchmark at https://kuaimod.github.io.
Abstract:Continual offline reinforcement learning (CORL) has shown impressive ability in diffusion-based lifelong learning systems by modeling the joint distributions of trajectories. However, most research only focuses on limited continual task settings where the tasks have the same observation and action space, which deviates from the realistic demands of training agents in various environments. In view of this, we propose Vector-Quantized Continual Diffuser, named VQ-CD, to break the barrier of different spaces between various tasks. Specifically, our method contains two complementary sections, where the quantization spaces alignment provides a unified basis for the selective weights activation. In the quantized spaces alignment, we leverage vector quantization to align the different state and action spaces of various tasks, facilitating continual training in the same space. Then, we propose to leverage a unified diffusion model attached by the inverse dynamic model to master all tasks by selectively activating different weights according to the task-related sparse masks. Finally, we conduct extensive experiments on 15 continual learning (CL) tasks, including conventional CL task settings (identical state and action spaces) and general CL task settings (various state and action spaces). Compared with 16 baselines, our method reaches the SOTA performance.
Abstract:The diversity of recommendation is equally crucial as accuracy in improving user experience. Existing studies, e.g., Determinantal Point Process (DPP) and Maximal Marginal Relevance (MMR), employ a greedy paradigm to iteratively select items that optimize both accuracy and diversity. However, prior methods typically exhibit quadratic complexity, limiting their applications to the re-ranking stage and are not applicable to other recommendation stages with a larger pool of candidate items, such as the pre-ranking and ranking stages. In this paper, we propose Contextual Distillation Model (CDM), an efficient recommendation model that addresses diversification, suitable for the deployment in all stages of industrial recommendation pipelines. Specifically, CDM utilizes the candidate items in the same user request as context to enhance the diversification of the results. We propose a contrastive context encoder that employs attention mechanisms to model both positive and negative contexts. For the training of CDM, we compare each target item with its context embedding and utilize the knowledge distillation framework to learn the win probability of each target item under the MMR algorithm, where the teacher is derived from MMR outputs. During inference, ranking is performed through a linear combination of the recommendation and student model scores, ensuring both diversity and efficiency. We perform offline evaluations on two industrial datasets and conduct online A/B test of CDM on the short-video platform KuaiShou. The considerable enhancements observed in both recommendation quality and diversity, as shown by metrics, provide strong superiority for the effectiveness of CDM.