Abstract:While InfoNCE powers modern contrastive learning, its geometric mechanisms remain under-characterized beyond the canonical alignment--uniformity decomposition. We present a measure-theoretic framework that models learning as the evolution of representation measures on a fixed embedding manifold. By establishing value and gradient consistency in the large-batch limit, we bridge the stochastic objective to explicit deterministic energy landscapes, uncovering a fundamental geometric bifurcation between the unimodal and multimodal regimes. In the unimodal setting, the intrinsic landscape is strictly convex with a unique Gibbs equilibrium; here, entropy acts merely as a tie-breaker, clarifying "uniformity" as a constrained expansion within the alignment basin. In contrast, the symmetric multimodal objective contains a persistent negative symmetric divergence term that remains even after kernel sharpening. We show that this term induces barrier-driven co-adaptation, enforcing a population-level modality gap as a structural geometric necessity rather than an initialization artifact. Our results shift the analytical lens from pointwise discrimination to population geometry, offering a principled basis for diagnosing and controlling distributional misalignment.
Abstract:Precise control in modern robotic applications is always an open issue due to unknown time-varying disturbances. Existing meta-learning-based approaches require a shared representation of environmental structures, which lack flexibility for realistic non-structural disturbances. Besides, representation error and the distribution shifts can lead to heavy degradation in prediction accuracy. This work presents a generalizable disturbance estimation framework that builds on meta-learning and feedback-calibrated online adaptation. By extracting features from a finite time window of past observations, a unified representation that effectively captures general non-structural disturbances can be learned without predefined structural assumptions. The online adaptation process is subsequently calibrated by a state-feedback mechanism to attenuate the learning residual originating from the representation and generalizability limitations. Theoretical analysis shows that simultaneous convergence of both the online learning error and the disturbance estimation error can be achieved. Through the unified meta-representation, our framework effectively estimates multiple rapidly changing disturbances, as demonstrated by quadrotor flight experiments. See the project page for video, supplementary material and code: https://nonstructural-metalearn.github.io.
Abstract:Real-world physics can only be analytically modeled with a certain level of precision for modern intricate robotic systems. As a result, tracking aggressive trajectories accurately could be challenging due to the existence of residual physics during controller synthesis. This paper presents a self-supervised residual learning and trajectory optimization framework to address the aforementioned challenges. At first, unknown dynamic effects on the closed-loop model are learned and treated as residuals of the nominal dynamics, jointly forming a hybrid model. We show that learning with analytic gradients can be achieved using only trajectory-level data while enjoying accurate long-horizon prediction with an arbitrary integration step size. Subsequently, a trajectory optimizer is developed to compute the optimal reference trajectory with the residual physics along it minimized. It ends up with trajectories that are friendly to the following control level. The agile flight of quadrotors illustrates that by utilizing the hybrid dynamics, the proposed optimizer outputs aggressive motions that can be precisely tracked.
Abstract:Multi-model routing has evolved from an engineering technique into essential infrastructure, yet existing work lacks a systematic, reproducible benchmark for evaluating vision-language models (VLMs). We present VL-RouterBench to assess the overall capability of VLM routing systems systematically. The benchmark is grounded in raw inference and scoring logs from VLMs and constructs quality and cost matrices over sample-model pairs. In scale, VL-RouterBench covers 14 datasets across 3 task groups, totaling 30,540 samples, and includes 15 open-source models and 2 API models, yielding 519,180 sample-model pairs and a total input-output token volume of 34,494,977. The evaluation protocol jointly measures average accuracy, average cost, and throughput, and builds a ranking score from the harmonic mean of normalized cost and accuracy to enable comparison across router configurations and cost budgets. On this benchmark, we evaluate 10 routing methods and baselines and observe a significant routability gain, while the best current routers still show a clear gap to the ideal Oracle, indicating considerable room for improvement in router architecture through finer visual cues and modeling of textual structure. We will open-source the complete data construction and evaluation toolchain to promote comparability, reproducibility, and practical deployment in multimodal routing research.
Abstract:The widespread application of Large Language Models (LLMs) has motivated a growing interest in their capacity for processing dynamic graphs. Temporal motifs, as an elementary unit and important local property of dynamic graphs which can directly reflect anomalies and unique phenomena, are essential for understanding their evolutionary dynamics and structural features. However, leveraging LLMs for temporal motif analysis on dynamic graphs remains relatively unexplored. In this paper, we systematically study LLM performance on temporal motif-related tasks. Specifically, we propose a comprehensive benchmark, LLMTM (Large Language Models in Temporal Motifs), which includes six tailored tasks across nine temporal motif types. We then conduct extensive experiments to analyze the impacts of different prompting techniques and LLMs (including nine models: openPangu-7B, the DeepSeek-R1-Distill-Qwen series, Qwen2.5-32B-Instruct, GPT-4o-mini, DeepSeek-R1, and o3) on model performance. Informed by our benchmark findings, we develop a tool-augmented LLM agent that leverages precisely engineered prompts to solve these tasks with high accuracy. Nevertheless, the high accuracy of the agent incurs a substantial cost. To address this trade-off, we propose a simple yet effective structure-aware dispatcher that considers both the dynamic graph's structural properties and the LLM's cognitive load to intelligently dispatch queries between the standard LLM prompting and the more powerful agent. Our experiments demonstrate that the structure-aware dispatcher effectively maintains high accuracy while reducing cost.




Abstract:Building AI systems for GUI automation task has attracted remarkable research efforts, where MLLMs are leveraged for processing user requirements and give operations. However, GUI automation includes a wide range of tasks, from document processing to online shopping, from CAD to video editing. Diversity between particular tasks requires MLLMs for GUI automation to have heterogeneous capabilities and master multidimensional expertise, raising problems on constructing such a model. To address such challenge, we propose GAIR: GUI Automation via Information-Joint Reasoning and Group Reflection, a novel MLLM-based GUI automation agent framework designed for integrating knowledge and combining capabilities from heterogeneous models to build GUI automation agent systems with higher performance. Since different GUI-specific MLLMs are trained on different dataset and thus have different strengths, GAIR introduced a general-purpose MLLM for jointly processing the information from multiple GUI-specific models, further enhancing performance of the agent framework. The general-purpose MLLM also serves as decision maker, trying to execute a reasonable operation based on previously gathered information. When the general-purpose model thinks that there isn't sufficient information for a reasonable decision, GAIR would transit into group reflection status, where the general-purpose model would provide GUI-specific models with different instructions and hints based on their strengths and weaknesses, driving them to gather information with more significance and accuracy that can support deeper reasoning and decision. We evaluated the effectiveness and reliability of GAIR through extensive experiments on GUI benchmarks.
Abstract:Continual learning (CL) aims to incrementally train a model on a sequence of tasks while retaining performance on prior ones. However, storing and replaying data is often infeasible due to privacy or security constraints and impractical for arbitrary pre-trained models. Data-free CL seeks to update models without access to previous data. Beyond regularization, we employ model inversion to synthesize data from the trained model, enabling replay without storing samples. Yet, model inversion in predictive models faces two challenges: (1) generating inputs solely from compressed output labels causes drift between synthetic and real data, and replaying such data can erode prior knowledge; (2) inversion is computationally expensive since each step backpropagates through the full model. These issues are amplified in large pre-trained models such as CLIP. To improve efficiency, we propose Per-layer Model Inversion (PMI), inspired by faster convergence in single-layer optimization. PMI provides strong initialization for full-model inversion, substantially reducing iterations. To mitigate feature shift, we model class-wise features via Gaussian distributions and contrastive model, ensuring alignment between synthetic and real features. Combining PMI and feature modeling, our approach enables continual learning of new classes by generating pseudo-images from semantic-aware projected features, achieving strong effectiveness and compatibility across multiple CL settings.




Abstract:Fine-tuning large-scale pre-trained models with limited data presents significant challenges for generalization. While Sharpness-Aware Minimization (SAM) has proven effective in improving generalization by seeking flat minima, its substantial extra memory and computation overhead make it impractical for large models. Integrating SAM with parameter-efficient fine-tuning methods like Low-Rank Adaptation (LoRA) is a promising direction. However, we find that directly applying SAM to LoRA parameters limits the sharpness optimization to a restricted subspace, hindering its effectiveness. To address this limitation, we propose Bi-directional Low-Rank Adaptation (Bi-LoRA), which introduces an auxiliary LoRA module to model SAM's adversarial weight perturbations. It decouples SAM's weight perturbations from LoRA optimization: the primary LoRA module adapts to specific tasks via standard gradient descent, while the auxiliary module captures the sharpness of the loss landscape through gradient ascent. Such dual-module design enables Bi-LoRA to capture broader sharpness for achieving flatter minima while remaining memory-efficient. Another important benefit is that the dual design allows for simultaneous optimization and perturbation, eliminating SAM's doubled training costs. Extensive experiments across diverse tasks and architectures demonstrate Bi-LoRA's efficiency and effectiveness in enhancing generalization.
Abstract:In the field of 3D medical imaging, accurately extracting and representing the blood vessels with curvilinear structures holds paramount importance for clinical diagnosis. Previous methods have commonly relied on discrete representation like mask, often resulting in local fractures or scattered fragments due to the inherent limitations of the per-pixel classification paradigm. In this work, we introduce DeformCL, a new continuous representation based on Deformable Centerlines, where centerline points act as nodes connected by edges that capture spatial relationships. Compared with previous representations, DeformCL offers three key advantages: natural connectivity, noise robustness, and interaction facility. We present a comprehensive training pipeline structured in a cascaded manner to fully exploit these favorable properties of DeformCL. Extensive experiments on four 3D vessel segmentation datasets demonstrate the effectiveness and superiority of our method. Furthermore, the visualization of curved planar reformation images validates the clinical significance of the proposed framework. We release the code in https://github.com/barry664/DeformCL




Abstract:Recent advancements in large language models (LLMs) have demonstrated substantial progress in reasoning capabilities, such as DeepSeek-R1, which leverages rule-based reinforcement learning to enhance logical reasoning significantly. However, extending these achievements to multimodal large language models (MLLMs) presents critical challenges, which are frequently more pronounced for Multimodal Small Language Models (MSLMs) given their typically weaker foundational reasoning abilities: (1) the scarcity of high-quality multimodal reasoning datasets, (2) the degradation of reasoning capabilities due to the integration of visual processing, and (3) the risk that direct application of reinforcement learning may produce complex yet incorrect reasoning processes. To address these challenges, we design a novel framework Infi-MMR to systematically unlock the reasoning potential of MSLMs through a curriculum of three carefully structured phases and propose our multimodal reasoning model Infi-MMR-3B. The first phase, Foundational Reasoning Activation, leverages high-quality textual reasoning datasets to activate and strengthen the model's logical reasoning capabilities. The second phase, Cross-Modal Reasoning Adaptation, utilizes caption-augmented multimodal data to facilitate the progressive transfer of reasoning skills to multimodal contexts. The third phase, Multimodal Reasoning Enhancement, employs curated, caption-free multimodal data to mitigate linguistic biases and promote robust cross-modal reasoning. Infi-MMR-3B achieves both state-of-the-art multimodal math reasoning ability (43.68% on MathVerse testmini, 27.04% on MathVision test, and 21.33% on OlympiadBench) and general reasoning ability (67.2% on MathVista testmini).