Abstract:Graph retrieval-augmented generation (GraphRAG) has emerged as a powerful paradigm for enhancing large language models (LLMs) with external knowledge. It leverages graphs to model the hierarchical structure between specific concepts, enabling more coherent and effective knowledge retrieval for accurate reasoning.Despite its conceptual promise, recent studies report that GraphRAG frequently underperforms vanilla RAG on many real-world tasks. This raises a critical question: Is GraphRAG really effective, and in which scenarios do graph structures provide measurable benefits for RAG systems? To address this, we propose GraphRAG-Bench, a comprehensive benchmark designed to evaluate GraphRAG models onboth hierarchical knowledge retrieval and deep contextual reasoning. GraphRAG-Bench features a comprehensive dataset with tasks of increasing difficulty, coveringfact retrieval, complex reasoning, contextual summarization, and creative generation, and a systematic evaluation across the entire pipeline, from graph constructionand knowledge retrieval to final generation. Leveraging this novel benchmark, we systematically investigate the conditions when GraphRAG surpasses traditional RAG and the underlying reasons for its success, offering guidelines for its practical application. All related resources and analyses are collected for the community at https://github.com/GraphRAG-Bench/GraphRAG-Benchmark.
Abstract:Multimodal large language models (MLLMs) have achieved impressive success in question-answering tasks, yet their capabilities for spatial understanding are less explored. This work investigates a critical question: do existing MLLMs possess 3D spatial perception and understanding abilities? Concretely, we make the following contributions in this paper: (i) we introduce VGBench, a benchmark specifically designed to assess MLLMs for visual geometry perception, e.g., camera pose and motion estimation; (ii) we propose SpatialScore, the most comprehensive and diverse multimodal spatial understanding benchmark to date, integrating VGBench with relevant data from the other 11 existing datasets. This benchmark comprises 28K samples across various spatial understanding tasks, modalities, and QA formats, along with a carefully curated challenging subset, SpatialScore-Hard; (iii) we develop SpatialAgent, a novel multi-agent system incorporating 9 specialized tools for spatial understanding, supporting both Plan-Execute and ReAct reasoning paradigms; (iv) we conduct extensive evaluations to reveal persistent challenges in spatial reasoning while demonstrating the effectiveness of SpatialAgent. We believe SpatialScore will offer valuable insights and serve as a rigorous benchmark for the next evolution of MLLMs.
Abstract:The latency of the exchanges in Market Making (MM) is inevitable due to hardware limitations, system processing times, delays in receiving data from exchanges, the time required for order transmission to reach the market, etc. Existing reinforcement learning (RL) methods for Market Making (MM) overlook the impact of these latency, which can lead to unintended order cancellations due to price discrepancies between decision and execution times and result in undesired inventory accumulation, exposing MM traders to increased market risk. Therefore, these methods cannot be applied in real MM scenarios. To address these issues, we first build a realistic MM environment with random delays of 30-100 milliseconds for order placement and market information reception, and implement a batch matching mechanism that collects orders within every 500 milliseconds before matching them all at once, simulating the batch auction mechanisms adopted by some exchanges. Then, we propose Relaver, an RL-based method for MM to tackle the latency and inventory risk issues. The three main contributions of Relaver are: i) we introduce an augmented state-action space that incorporates order hold time alongside price and volume, enabling Relaver to optimize execution strategies under latency constraints and time-priority matching mechanisms, ii) we leverage dynamic programming (DP) to guide the exploration of RL training for better policies, iii) we train a market trend predictor, which can guide the agent to intelligently adjust the inventory to reduce the risk. Extensive experiments and ablation studies on four real-world datasets demonstrate that \textsc{Relaver} significantly improves the performance of state-of-the-art RL-based MM strategies across multiple metrics.
Abstract:Large Language Models (LLMs) are transforming geospatial artificial intelligence (GeoAI), offering new capabilities in data processing, spatial analysis, and decision support. This paper examines the open-source paradigm's pivotal role in this transformation. While proprietary LLMs offer accessibility, they often limit the customization, interoperability, and transparency vital for specialized geospatial tasks. Conversely, open-source alternatives significantly advance Geographic Information Science (GIScience) by fostering greater adaptability, reproducibility, and community-driven innovation. Open frameworks empower researchers to tailor solutions, integrate cutting-edge methodologies (e.g., reinforcement learning, advanced spatial indexing), and align with FAIR principles. However, the growing reliance on any LLM necessitates careful consideration of security vulnerabilities, ethical risks, and robust governance for AI-generated geospatial outputs. Ongoing debates on accessibility, regulation, and misuse underscore the critical need for responsible AI development strategies. This paper argues that GIScience advances best not through a single model type, but by cultivating a diverse, interoperable ecosystem combining open-source foundations for innovation, bespoke geospatial models, and interdisciplinary collaboration. By critically evaluating the opportunities and challenges of open-source LLMs within the broader GeoAI landscape, this work contributes to a nuanced discourse on leveraging AI to effectively advance spatial research, policy, and decision-making in an equitable, sustainable, and scientifically rigorous manner.
Abstract:Reasoning is the fundamental capability of large language models (LLMs). Due to the rapid progress of LLMs, there are two main issues of current benchmarks: i) these benchmarks can be crushed in a short time (less than 1 year), and ii) these benchmarks may be easily hacked. To handle these issues, we propose the ever-scalingness for building the benchmarks which are uncrushable, unhackable, auto-verifiable and general. This paper presents Nondeterministic Polynomial-time Problem Challenge (NPPC), an ever-scaling reasoning benchmark for LLMs. Specifically, the NPPC has three main modules: i) npgym, which provides a unified interface of 25 well-known NP-complete problems and can generate any number of instances with any levels of complexities, ii) npsolver: which provides a unified interface to evaluate the problem instances with both online and offline models via APIs and local deployments, respectively, and iii) npeval: which provides the comprehensive and ready-to-use tools to analyze the performances of LLMs over different problems, the number of tokens, the aha moments, the reasoning errors and the solution errors. Extensive experiments over widely-used LLMs demonstrate: i) NPPC can successfully decrease the performances of advanced LLMs' performances to below 10%, demonstrating that NPPC is uncrushable, ii) DeepSeek-R1, Claude-3.7-Sonnet, and o1/o3-mini are the most powerful LLMs, where DeepSeek-R1 outperforms Claude-3.7-Sonnet and o1/o3-mini in most NP-complete problems considered, and iii) the numbers of tokens, aha moments in the advanced LLMs, e.g., Claude-3.7-Sonnet and DeepSeek-R1, are observed first to increase and then decrease when the problem instances become more and more difficult. We believe that NPPC is the first ever-scaling reasoning benchmark, serving as the uncrushable and unhackable testbed for LLMs toward artificial general intelligence (AGI).
Abstract:Generating SQLs from user queries is a long-standing challenge, where the accuracy of initial schema linking significantly impacts subsequent SQL generation performance. However, current schema linking models still struggle with missing relevant schema elements or an excess of redundant ones. A crucial reason for this is that commonly used metrics, recall and precision, fail to capture relevant element missing and thus cannot reflect actual schema linking performance. Motivated by this, we propose an enhanced schema linking metric by introducing a restricted missing indicator. Accordingly, we introduce Knapsack optimization-based Schema Linking Agent (KaSLA), a plug-in schema linking agent designed to prevent the missing of relevant schema elements while minimizing the inclusion of redundant ones. KaSLA employs a hierarchical linking strategy that first identifies the optimal table linking and subsequently links columns within the selected table to reduce linking candidate space. In each linking process, it utilize a knapsack optimization approach to link potentially relevant elements while accounting for a limited tolerance of potential redundant ones.With this optimization, KaSLA-1.6B achieves superior schema linking results compared to large-scale LLMs, including deepseek-v3 with state-of-the-art (SOTA) schema linking method. Extensive experiments on Spider and BIRD benchmarks verify that KaSLA can significantly improve the SQL generation performance of SOTA text-to-SQL models by substituting their schema linking processes.
Abstract:Recent efforts leverage Large Language Models (LLMs) for modeling text-attributed graph structures in node classification tasks. These approaches describe graph structures for LLMs to understand or aggregate LLM-generated textual attribute embeddings through graph structure. However, these approaches face two main limitations in modeling graph structures with LLMs. (i) Graph descriptions become verbose in describing high-order graph structure. (ii) Textual attributes alone do not contain adequate graph structure information. It is challenging to model graph structure concisely and adequately with LLMs. LLMs lack built-in mechanisms to model graph structures directly. They also struggle with complex long-range dependencies between high-order nodes and target nodes. Inspired by the observation that LLMs pre-trained on one language can achieve exceptional performance on another with minimal additional training, we propose \textbf{G}raph-\textbf{D}efined \textbf{L}anguage for \textbf{L}arge \textbf{L}anguage \textbf{M}odel (GDL4LLM). This novel framework enables LLMs to transfer their powerful language understanding capabilities to graph-structured data. GDL4LLM translates graphs into a graph language corpus instead of graph descriptions and pre-trains LLMs on this corpus to adequately understand graph structures. During fine-tuning, this corpus describes the structural information of target nodes concisely with only a few tokens. By treating graphs as a new language, GDL4LLM enables LLMs to model graph structures adequately and concisely for node classification tasks. Extensive experiments on three real-world datasets demonstrate that GDL4LLM outperforms description-based and textual attribute embeddings-based baselines by efficiently modeling different orders of graph structure with LLMs.
Abstract:With the continuous advancement of large language models (LLMs) in mathematical reasoning, evaluating their performance in this domain has become a prominent research focus. Recent studies have raised concerns about the reliability of current mathematical benchmarks, highlighting issues such as simplistic design and potential data leakage. Therefore, creating a reliable benchmark that effectively evaluates the genuine capabilities of LLMs in mathematical reasoning remains a significant challenge. To address this, we propose RV-Bench, a framework for Benchmarking LLMs via Random Variables in mathematical reasoning. Specifically, the background content of a random variable question (RV question) mirrors the original problem in existing standard benchmarks, but the variable combinations are randomized into different values. LLMs must fully understand the problem-solving process for the original problem to correctly answer RV questions with various combinations of variable values. As a result, the LLM's genuine capability in mathematical reasoning is reflected by its accuracy on RV-Bench. Extensive experiments are conducted with 29 representative LLMs across 900+ RV questions. A leaderboard for RV-Bench ranks the genuine capability of these LLMs. Further analysis of accuracy dropping indicates that current LLMs still struggle with complex mathematical reasoning problems.
Abstract:Heterogeneous information networks (HINs) can be used to model various real-world systems. As HINs consist of multiple types of nodes, edges, and node features, it is nontrivial to directly apply graph neural network (GNN) techniques in heterogeneous cases. There are two remaining major challenges. First, homogeneous message passing in a recursive manner neglects the distinct types of nodes and edges in different hops, leading to unnecessary information mixing. This often results in the incorporation of ``noise'' from uncorrelated intermediate neighbors, thereby degrading performance. Second, feature learning should be handled differently for different types, which is challenging especially when the type sizes are large. To bridge this gap, we develop a novel framework - AutoGNR, to directly utilize and automatically extract effective heterogeneous information. Instead of recursive homogeneous message passing, we introduce a non-recursive message passing mechanism for GNN to mitigate noise from uncorrelated node types in HINs. Furthermore, under the non-recursive framework, we manage to efficiently perform neural architecture search for an optimal GNN structure in a differentiable way, which can automatically define the heterogeneous paths for aggregation. Our tailored search space encompasses more effective candidates while maintaining a tractable size. Experiments show that AutoGNR consistently outperforms state-of-the-art methods on both normal and large scale real-world HIN datasets.
Abstract:World model emerges as a key module in decision making, where MuZero and Dreamer achieve remarkable successes in complex tasks. Recent work leverages Large Language Models (LLMs) as general world simulators to simulate the dynamics of the world due to their generalizability. LLMs also serve as the world model for deliberative reasoning in Reasoning via Planning (RAP) and Tree of Thought (ToT). However, the world models are either evaluated as a general world simulator, or as a functional module of the agent, i.e., predicting the transitions to assist the planning. In this work, we propose a comprehensive evaluation of the world models with LLMs from the decision making perspective. Specifically, we leverage the 31 diverse environments from (Wang et al., 2023;2024) and curate the rule-based policy of each environment for the diverse evaluation. Then, we design three main tasks, i.e., policy verification, action proposal, and policy planning, where the world models can be used for decision making solely. Finally, we conduct the comprehensive evaluation of the advanced LLMs, i.e., GPT-4o and GPT-4o-mini, on the environments for the three main tasks under various settings. The key observations include: i) GPT-4o significantly outperforms GPT-4o-mini on the three main tasks, especially for the tasks which require the domain knowledge, ii) the performance of the world model with LLM will be decreased for long-term decision-making tasks, and iii) the combination of different functionalities of the world model will brings additional unstabilities of the performance.