LMO, CELESTE, HEC Paris
Abstract:Evaluating the clinical correctness and reasoning fidelity of automatically generated medical imaging reports remains a critical yet unresolved challenge. Existing evaluation methods often fail to capture the structured diagnostic logic that underlies radiological interpretation, resulting in unreliable judgments and limited clinical relevance. We introduce AgentsEval, a multi-agent stream reasoning framework that emulates the collaborative diagnostic workflow of radiologists. By dividing the evaluation process into interpretable steps including criteria definition, evidence extraction, alignment, and consistency scoring, AgentsEval provides explicit reasoning traces and structured clinical feedback. We also construct a multi-domain perturbation-based benchmark covering five medical report datasets with diverse imaging modalities and controlled semantic variations. Experimental results demonstrate that AgentsEval delivers clinically aligned, semantically faithful, and interpretable evaluations that remain robust under paraphrastic, semantic, and stylistic perturbations. This framework represents a step toward transparent and clinically grounded assessment of medical report generation systems, fostering trustworthy integration of large language models into clinical practice.
Abstract:Digital twins are virtual replicas of physical entities and are poised to transform personalized medicine through the real-time simulation and prediction of human physiology. Translating this paradigm from engineering to biomedicine requires overcoming profound challenges, including anatomical variability, multi-scale biological processes, and the integration of multi-physics phenomena. This survey systematically reviews methodologies for building digital twins of human organs, structured around a pipeline decoupled into anatomical twinning (capturing patient-specific geometry and structure) and functional twinning (simulating multi-scale physiology from cellular to organ-level function). We categorize approaches both by organ-specific properties and by technical paradigm, with particular emphasis on multi-scale and multi-physics integration. A key focus is the role of artificial intelligence (AI), especially physics-informed AI, in enhancing model fidelity, scalability, and personalization. Furthermore, we discuss the critical challenges of clinical validation and translational pathways. This study not only charts a roadmap for overcoming current bottlenecks in single-organ twins but also outlines the promising, albeit ambitious, future of interconnected multi-organ digital twins for whole-body precision healthcare.
Abstract:4D spatial intelligence involves perceiving and processing how objects move or change over time. Humans naturally possess 4D spatial intelligence, supporting a broad spectrum of spatial reasoning abilities. To what extent can Multimodal Large Language Models (MLLMs) achieve human-level 4D spatial intelligence? In this work, we present Spatial4D-Bench, a versatile 4D spatial intelligence benchmark designed to comprehensively assess the 4D spatial reasoning abilities of MLLMs. Unlike existing spatial intelligence benchmarks that are often small-scale or limited in diversity, Spatial4D-Bench provides a large-scale, multi-task evaluation benchmark consisting of ~40,000 question-answer pairs covering 18 well-defined tasks. We systematically organize these tasks into six cognitive categories: object understanding, scene understanding, spatial relationship understanding, spatiotemporal relationship understanding, spatial reasoning and spatiotemporal reasoning. Spatial4D-Bench thereby offers a structured and comprehensive benchmark for evaluating the spatial cognition abilities of MLLMs, covering a broad spectrum of tasks that parallel the versatility of human spatial intelligence. We benchmark various state-of-the-art open-source and proprietary MLLMs on Spatial4D-Bench and reveal their substantial limitations in a wide variety of 4D spatial reasoning aspects, such as route plan, action recognition, and physical plausibility reasoning. We hope that the findings provided in this work offer valuable insights to the community and that our benchmark can facilitate the development of more capable MLLMs toward human-level 4D spatial intelligence. More resources can be found on our project page.
Abstract:Traditional recommendation systems suffer from inconsistency in multi-stage optimization objectives. Generative Recommendation (GR) mitigates them through an end-to-end framework; however, existing methods still rely on matching mechanisms based on inductive patterns. Although responsive, they lack the ability to uncover complex user intents that require deductive reasoning based on world knowledge. Meanwhile, LLMs show strong deep reasoning capabilities, but their latency and computational costs remain challenging for industrial applications. More critically, there are performance bottlenecks in multi-scenario scalability: as shown in Figure 1, existing solutions require independent training and deployment for each scenario, leading to low resource utilization and high maintenance costs-a challenge unaddressed in GR literature. To address these, we present OxygenREC, an industrial recommendation system that leverages Fast-Slow Thinking to deliver deep reasoning with strict latency and multi-scenario requirements of real-world environments. First, we adopt a Fast-Slow Thinking architecture. Slow thinking uses a near-line LLM pipeline to synthesize Contextual Reasoning Instructions, while fast thinking employs a high-efficiency encoder-decoder backbone for real-time generation. Second, to ensure reasoning instructions effectively enhance recommendation generation, we introduce a semantic alignment mechanism with Instruction-Guided Retrieval (IGR) to filter intent-relevant historical behaviors and use a Query-to-Item (Q2I) loss for instruction-item consistency. Finally, to resolve multi-scenario scalability, we transform scenario information into controllable instructions, using unified reward mapping and Soft Adaptive Group Clip Policy Optimization (SA-GCPO) to align policies with diverse business objectives, realizing a train-once-deploy-everywhere paradigm.
Abstract:Recent approaches have demonstrated the promise of using diffusion models to generate interactive and explorable worlds. However, most of these methods face critical challenges such as excessively large parameter sizes, reliance on lengthy inference steps, and rapidly growing historical context, which severely limit real-time performance and lack text-controlled generation capabilities. To address these challenges, we propose \method, a novel framework designed to generate realistic, interactive, and continuous worlds from a single image or text prompt. \method achieves this through a carefully designed framework that supports keyboard-based exploration of the generated worlds. The framework comprises three core components: (1) a long-video generation framework integrating unified context compression with linear attention; (2) a real-time streaming acceleration strategy powered by bidirectional attention distillation and an enhanced text embedding scheme; (3) a text-controlled method for generating world events. We have provided the codebase in the supplementary material.
Abstract:The rapid advancement of large language models (LLMs) has intensified concerns about the robustness of their safety alignment. While existing jailbreak studies explore both single-turn and multi-turn strategies, most implicitly assume a static safety boundary and fail to account for how contextual interactions dynamically influence model behavior, leading to limited stability and generalization. Motivated by this gap, we propose MEEA (Mere Exposure Effect Attack), a psychology-inspired, fully automated black-box framework for evaluating multi-turn safety robustness, grounded in the mere exposure effect. MEEA leverages repeated low-toxicity semantic exposure to induce a gradual shift in a model's effective safety threshold, enabling progressive erosion of alignment constraints over sustained interactions. Concretely, MEEA constructs semantically progressive prompt chains and optimizes them using a simulated annealing strategy guided by semantic similarity, toxicity, and jailbreak effectiveness. Extensive experiments on both closed-source and open-source models, including GPT-4, Claude-3.5, and DeepSeek-R1, demonstrate that MEEA consistently achieves higher attack success rates than seven representative baselines, with an average Attack Success Rate (ASR) improvement exceeding 20%. Ablation studies further validate the necessity of both annealing-based optimization and contextual exposure mechanisms. Beyond improved attack effectiveness, our findings indicate that LLM safety behavior is inherently dynamic and history-dependent, challenging the common assumption of static alignment boundaries and highlighting the need for interaction-aware safety evaluation and defense mechanisms. Our code is available at: https://github.com/Carney-lsz/MEEA




Abstract:Fiber reinforcement and polymer matrix respond differently to manufacturing conditions due to mismatch in coefficient of thermal expansion and matrix shrinkage during curing of thermosets. These heterogeneities generate residual stresses over multiple length scales, whose partial release leads to process-induced deformation (PID), requiring accurate prediction and mitigation via optimized non-isothermal cure cycles. This study considers a unidirectional AS4 carbon fiber/amine bi-functional epoxy prepreg and models PID using a two-mechanism framework that accounts for thermal expansion/shrinkage and cure shrinkage. The model is validated against manufacturing trials to identify initial and boundary conditions, then used to generate PID responses for a diverse set of non-isothermal cure cycles (time-temperature profiles). Building on this physics-based foundation, we develop a data-driven surrogate based on Deep Operator Networks (DeepONets). A DeepONet is trained on a dataset combining high-fidelity simulations with targeted experimental measurements of PID. We extend this to a Feature-wise Linear Modulation (FiLM) DeepONet, where branch-network features are modulated by external parameters, including the initial degree of cure, enabling prediction of time histories of degree of cure, viscosity, and deformation. Because experimental data are available only at limited time instances (for example, final deformation), we use transfer learning: simulation-trained trunk and branch networks are fixed and only the final layer is updated using measured final deformation. Finally, we augment the framework with Ensemble Kalman Inversion (EKI) to quantify uncertainty under experimental conditions and to support optimization of cure schedules for reduced PID in composites.




Abstract:In autonomous driving, end-to-end planners learn scene representations from raw sensor data and utilize them to generate a motion plan or control actions. However, exclusive reliance on the current scene for motion planning may result in suboptimal responses in highly dynamic traffic environments where ego actions further alter the future scene. To model the evolution of future scenes, we leverage the World Model to represent how the ego vehicle and its environment interact and change over time, which entails complex reasoning. The Chain of Thought (CoT) offers a promising solution by forecasting a sequence of future thoughts that subsequently guide trajectory refinement. In this paper, we propose FutureX, a CoT-driven pipeline that enhances end-to-end planners to perform complex motion planning via future scene latent reasoning and trajectory refinement. Specifically, the Auto-think Switch examines the current scene and decides whether additional reasoning is required to yield a higher-quality motion plan. Once FutureX enters the Thinking mode, the Latent World Model conducts a CoT-guided rollout to predict future scene representation, enabling the Summarizer Module to further refine the motion plan. Otherwise, FutureX operates in an Instant mode to generate motion plans in a forward pass for relatively simple scenes. Extensive experiments demonstrate that FutureX enhances existing methods by producing more rational motion plans and fewer collisions without compromising efficiency, thereby achieving substantial overall performance gains, e.g., 6.2 PDMS improvement for TransFuser on NAVSIM. Code will be released.
Abstract:Distribution Matching Distillation (DMD) distills a pre-trained multi-step diffusion model to a few-step one to improve inference efficiency. However, the performance of the latter is often capped by the former. To circumvent this dilemma, we propose DMDR, a novel framework that combines Reinforcement Learning (RL) techniques into the distillation process. We show that for the RL of the few-step generator, the DMD loss itself is a more effective regularization compared to the traditional ones. In turn, RL can help to guide the mode coverage process in DMD more effectively. These allow us to unlock the capacity of the few-step generator by conducting distillation and RL simultaneously. Meanwhile, we design the dynamic distribution guidance and dynamic renoise sampling training strategies to improve the initial distillation process. The experiments demonstrate that DMDR can achieve leading visual quality, prompt coherence among few-step methods, and even exhibit performance that exceeds the multi-step teacher.
Abstract:Fine-grained identification of IDS-flagged suspicious traffic is crucial in cybersecurity. In practice, cyber threats evolve continuously, making the discovery of novel malicious traffic a critical necessity as well as the identification of known classes. Recent studies have advanced this goal with deep models, but they often rely on task-specific architectures that limit transferability and require per-dataset tuning. In this paper we introduce MalRAG, the first LLM driven retrieval-augmented framework for open-set malicious traffic identification. MalRAG freezes the LLM and operates via comprehensive traffic knowledge construction, adaptive retrieval, and prompt engineering. Concretely, we construct a multi-view traffic database by mining prior malicious traffic from content, structural, and temporal perspectives. Furthermore, we introduce a Coverage-Enhanced Retrieval Algorithm that queries across these views to assemble the most probable candidates, thereby improving the inclusion of correct evidence. We then employ Traffic-Aware Adaptive Pruning to select a variable subset of these candidates based on traffic-aware similarity scores, suppressing incorrect matches and yielding reliable retrieved evidence. Moreover, we develop a suite of guidance prompts where task instruction, evidence referencing, and decision guidance are integrated with the retrieved evidence to improve LLM performance. Across diverse real-world datasets and settings, MalRAG delivers state-of-the-art results in both fine-grained identification of known classes and novel malicious traffic discovery. Ablation and deep-dive analyses further show that MalRAG effective leverages LLM capabilities yet achieves open-set malicious traffic identification without relying on a specific LLM.