Abstract:Manual slide creation is labor-intensive and requires expert prior knowledge. Existing natural language-based LLM generation methods struggle to capture the visual and structural nuances of slide designs. To address this, we formalize the Reference Image to Slide Generation task and propose Slide2Code, the first benchmark with difficulty-tiered samples based on a novel Slide Complexity Metric. We introduce SlideCoder, a layout-aware, retrieval-augmented framework for generating editable slides from reference images. SlideCoder integrates a Color Gradient-based Segmentation algorithm and a Hierarchical Retrieval-Augmented Generation method to decompose complex tasks and enhance code generation. We also release SlideMaster, a 7B open-source model fine-tuned with improved reverse-engineered data. Experiments show that SlideCoder outperforms state-of-the-art baselines by up to 40.5 points, demonstrating strong performance across layout fidelity, execution accuracy, and visual consistency. Our code is available at https://github.com/vinsontang1/SlideCoder.
Abstract:Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in automated front-end engineering, e.g., generating UI code from visual designs. However, existing front-end UI code generation benchmarks have the following limitations: (1) While framework-based development becomes predominant in modern front-end programming, current benchmarks fail to incorporate mainstream development frameworks. (2) Existing evaluations focus solely on the UI code generation task, whereas practical UI development involves several iterations, including refining editing, and repairing issues. (3) Current benchmarks employ unidimensional evaluation, lacking investigation into influencing factors like task difficulty, input context variations, and in-depth code-level analysis. To bridge these gaps, we introduce DesignBench, a multi-framework, multi-task evaluation benchmark for assessing MLLMs' capabilities in automated front-end engineering. DesignBench encompasses three widely-used UI frameworks (React, Vue, and Angular) alongside vanilla HTML/CSS, and evaluates on three essential front-end tasks (generation, edit, and repair) in real-world development workflows. DesignBench contains 900 webpage samples spanning over 11 topics, 9 edit types, and 6 issue categories, enabling detailed analysis of MLLM performance across multiple dimensions. Our systematic evaluation reveals critical insights into MLLMs' framework-specific limitations, task-related bottlenecks, and performance variations under different conditions, providing guidance for future research in automated front-end development. Our code and data are available at https://github.com/WebPAI/DesignBench.
Abstract:In recent years, as smart home systems have become more widespread, security concerns within these environments have become a growing threat. Currently, most smart home security solutions, such as anomaly detection and behavior prediction models, are trained using fixed datasets that are precollected. However, the process of dataset collection is time-consuming and lacks the flexibility needed to adapt to the constantly evolving smart home environment. Additionally, the collection of personal data raises significant privacy concerns for users. Lately, large language models (LLMs) have emerged as a powerful tool for a wide range of tasks across diverse application domains, thanks to their strong capabilities in natural language processing, reasoning, and problem-solving. In this paper, we propose an LLM-based synthetic dataset generation IoTGen framework to enhance the generalization of downstream smart home intelligent models. By generating new synthetic datasets that reflect changes in the environment, smart home intelligent models can be retrained to overcome the limitations of fixed and outdated data, allowing them to better align with the dynamic nature of real-world home environments. Specifically, we first propose a Structure Pattern Perception Compression (SPPC) method tailored for IoT behavior data, which preserves the most informative content in the data while significantly reducing token consumption. Then, we propose a systematic approach to create prompts and implement data generation to automatically generate IoT synthetic data with normative and reasonable properties, assisting task models in adaptive training to improve generalization and real-world performance.
Abstract:Multi-page websites dominate modern web development. However, existing design-to-code methods rely on simplified assumptions, limiting to single-page, self-contained webpages without external resource connection. To address this gap, we introduce the Multi-Page Resource-Aware Webpage (MRWeb) generation task, which transforms UI designs into multi-page, functional web UIs with internal/external navigation, image loading, and backend routing. We propose a novel resource list data structure to track resources, links, and design components. Our study applies existing methods to the MRWeb problem using a newly curated dataset of 500 websites (300 synthetic, 200 real-world). Specifically, we identify the best metric to evaluate the similarity of the web UI, assess the impact of the resource list on MRWeb generation, analyze MLLM limitations, and evaluate the effectiveness of the MRWeb tool in real-world workflows. The results show that resource lists boost navigation functionality from 0% to 66%-80% while facilitating visual similarity. Our proposed metrics and evaluation framework provide new insights into MLLM performance on MRWeb tasks. We release the MRWeb tool, dataset, and evaluation framework to promote further research.
Abstract:Converting webpage design into functional UI code is a critical step for building websites, which can be labor-intensive and time-consuming. To automate this design-to-code transformation process, various automated methods using learning-based networks and multi-modal large language models (MLLMs) have been proposed. However, these studies were merely evaluated on a narrow range of static web pages and ignored dynamic interaction elements, making them less practical for real-world website deployment. To fill in the blank, we present the first systematic investigation of MLLMs in generating interactive webpages. Specifically, we first formulate the Interaction-to-Code task and build the Interaction2Code benchmark that contains 97 unique web pages and 213 distinct interactions, spanning 15 webpage types and 30 interaction categories. We then conduct comprehensive experiments on three state-of-the-art (SOTA) MLLMs using both automatic metrics and human evaluations, thereby summarizing six findings accordingly. Our experimental results highlight the limitations of MLLMs in generating fine-grained interactive features and managing interactions with complex transformations and subtle visual modifications. We further analyze failure cases and their underlying causes, identifying 10 common failure types and assessing their severity. Additionally, our findings reveal three critical influencing factors, i.e., prompts, visual saliency, and textual descriptions, that can enhance the interaction generation performance of MLLMs. Based on these findings, we elicit implications for researchers and developers, providing a foundation for future advancements in this field. Datasets and source code are available at https://github.com/WebPAI/Interaction2Code.
Abstract:Smart homes, powered by the Internet of Things, offer great convenience but also pose security concerns due to abnormal behaviors, such as improper operations of users and potential attacks from malicious attackers. Several behavior modeling methods have been proposed to identify abnormal behaviors and mitigate potential risks. However, their performance often falls short because they do not effectively learn less frequent behaviors, consider temporal context, or account for the impact of noise in human behaviors. In this paper, we propose SmartGuard, an autoencoder-based unsupervised user behavior anomaly detection framework. First, we design a Loss-guided Dynamic Mask Strategy (LDMS) to encourage the model to learn less frequent behaviors, which are often overlooked during learning. Second, we propose a Three-level Time-aware Position Embedding (TTPE) to incorporate temporal information into positional embedding to detect temporal context anomaly. Third, we propose a Noise-aware Weighted Reconstruction Loss (NWRL) that assigns different weights for routine behaviors and noise behaviors to mitigate the interference of noise behaviors during inference. Comprehensive experiments on three datasets with ten types of anomaly behaviors demonstrates that SmartGuard consistently outperforms state-of-the-art baselines and also offers highly interpretable results.