Incorporating multiple knowledge sources is proven to be beneficial for answering complex factoid questions. To utilize multiple knowledge bases (KB), previous works merge all KBs into a single graph via entity alignment and reduce the problem to question-answering (QA) over the fused KB. In reality, various link relations between KBs might be adopted in QA over multi-KBs. In addition to the identity between the alignable entities (i.e. full link), unalignable entities expressing the different aspects or types of an abstract concept may also be treated identical in a question (i.e. partial link). Hence, the KB fusion in prior works fails to represent all types of links, restricting their ability to comprehend multi-KBs for QA. In this work, we formulate the novel Multi-KB-QA task that leverages the full and partial links among multiple KBs to derive correct answers, a benchmark with diversified link and query types is also constructed to efficiently evaluate Multi-KB-QA performance. Finally, we propose a method for Multi-KB-QA that encodes all link relations in the KB embedding to score and rank candidate answers. Experiments show that our method markedly surpasses conventional KB-QA systems in Multi-KB-QA, justifying the necessity of devising this task.
Our situated environment is full of uncertainty and highly dynamic, thus hindering the widespread adoption of machine-led Intelligent Decision-Making (IDM) in real world scenarios. This means IDM should have the capability of continuously learning new skills and efficiently generalizing across wider applications. IDM benefits from any new approaches and theoretical breakthroughs that exhibit Artificial General Intelligence (AGI) breaking the barriers between tasks and applications. Recent research has well-examined neural architecture, Transformer, as a backbone foundation model and its generalization to various tasks, including computer vision, natural language processing, and reinforcement learning. We therefore argue that a foundation decision model (FDM) can be established by formulating various decision-making tasks as a sequence decoding task using the Transformer architecture; this would be a promising solution to advance the applications of IDM in more complex real world tasks. In this paper, we elaborate on how a foundation decision model improves the efficiency and generalization of IDM. We also discuss potential applications of a FDM in multi-agent game AI, production scheduling, and robotics tasks. Finally, through a case study, we demonstrate our realization of the FDM, DigitalBrain (DB1) with 1.2 billion parameters, which achieves human-level performance over 453 tasks, including text generation, images caption, video games playing, robotic control, and traveling salesman problems. As a foundation decision model, DB1 would be a baby step towards more autonomous and efficient real world IDM applications.
Discriminative pre-trained language models (PrLMs) can be generalized as denoising auto-encoders that work with two procedures, ennoising and denoising. First, an ennoising process corrupts texts with arbitrary noising functions to construct training instances. Then, a denoising language model is trained to restore the corrupted tokens. Existing studies have made progress by optimizing independent strategies of either ennoising or denosing. They treat training instances equally throughout the training process, with little attention on the individual contribution of those instances. To model explicit signals of instance contribution, this work proposes to estimate the complexity of restoring the original sentences from corrupted ones in language model pre-training. The estimations involve the corruption degree in the ennoising data construction process and the prediction confidence in the denoising counterpart. Experimental results on natural language understanding and reading comprehension benchmarks show that our approach improves pre-training efficiency, effectiveness, and robustness. Code is publicly available at https://github.com/cooelf/InstanceReg
Panorama synthesis aims to generate a visual scene with all 360-degree views and enables an immersive virtual world. If the panorama synthesis process can be semantically controlled, we can then build an interactive virtual world and form an unprecedented human-computer interaction experience. Existing panoramic synthesis methods mainly focus on dealing with the inherent challenges brought by panoramas' spherical structure such as the projection distortion and the in-continuity problem when stitching edges, but is hard to effectively control semantics. The recent success of visual synthesis like DALL.E generates promising 2D flat images with semantic control, however, it is hard to directly be applied to panorama synthesis which inevitably generates distorted content. Besides, both of the above methods can not effectively synthesize high-resolution panoramas either because of quality or inference speed. In this work, we propose a new generation framework for high-resolution panorama images. The contributions include 1) alleviating the spherical distortion and edge in-continuity problem through spherical modeling, 2) supporting semantic control through both image and text hints, and 3) effectively generating high-resolution panoramas through parallel decoding. Our experimental results on a large-scale high-resolution Street View dataset validated the superiority of our approach quantitatively and qualitatively.
Transformer-based pre-trained models have gained much advance in recent years, becoming one of the most important backbones in natural language processing. Recent work shows that the attention mechanism inside Transformer may not be necessary, both convolutional neural networks and multi-layer perceptron based models have also been investigated as Transformer alternatives. In this paper, we consider a graph recurrent network for language model pre-training, which builds a graph structure for each sequence with local token-level communications, together with a sentence-level representation decoupled from other tokens. The original model performs well in domain-specific text classification under supervised training, however, its potential in learning transfer knowledge by self-supervised way has not been fully exploited. We fill this gap by optimizing the architecture and verifying its effectiveness in more general language understanding tasks, for both English and Chinese languages. As for model efficiency, instead of the quadratic complexity in Transformer-based models, our model has linear complexity and performs more efficiently during inference. Moreover, we find that our model can generate more diverse outputs with less contextualized feature redundancy than existing attention-based models.
Videos contain multi-modal content, and exploring multi-level cross-modal interactions with natural language queries can provide great prominence to text-video retrieval task (TVR). However, new trending methods applying large-scale pre-trained model CLIP for TVR do not focus on multi-modal cues in videos. Furthermore, the traditional methods simply concatenating multi-modal features do not exploit fine-grained cross-modal information in videos. In this paper, we propose a multi-level multi-modal hybrid fusion (M2HF) network to explore comprehensive interactions between text queries and each modality content in videos. Specifically, M2HF first utilizes visual features extracted by CLIP to early fuse with audio and motion features extracted from videos, obtaining audio-visual fusion features and motion-visual fusion features respectively. Multi-modal alignment problem is also considered in this process. Then, visual features, audio-visual fusion features, motion-visual fusion features, and texts extracted from videos establish cross-modal relationships with caption queries in a multi-level way. Finally, the retrieval outputs from all levels are late fused to obtain final text-video retrieval results. Our framework provides two kinds of training strategies, including an ensemble manner and an end-to-end manner. Moreover, a novel multi-modal balance loss function is proposed to balance the contributions of each modality for efficient end-to-end training. M2HF allows us to obtain state-of-the-art results on various benchmarks, eg, Rank@1 of 64.9\%, 68.2\%, 33.2\%, 57.1\%, 57.8\% on MSR-VTT, MSVD, LSMDC, DiDeMo, and ActivityNet, respectively.
Task generalization has been a long standing challenge in Natural Language Processing (NLP). Recent research attempts to improve the task generalization ability of pre-trained language models by mapping NLP tasks into human-readable prompted forms. However, these approaches require laborious and inflexible manual collection of prompts, and different prompts on the same downstream task may receive unstable performance. We propose Unified Schema Prompt, a flexible and extensible prompting method, which automatically customizes the learnable prompts for each task according to the task input schema. It models the shared knowledge between tasks, while keeping the characteristics of different task schema, and thus enhances task generalization ability. The schema prompt takes the explicit data structure of each task to formulate prompts so that little human effort is involved. To test the task generalization ability of schema prompt at scale, we conduct schema prompt-based multitask pre-training on a wide variety of general NLP tasks. The framework achieves strong zero-shot and few-shot generalization performance on 16 unseen downstream tasks from 8 task types (e.g., QA, NLI, etc). Furthermore, comprehensive analyses demonstrate the effectiveness of each component in the schema prompt, its flexibility in task compositionality, and its ability to improve performance under a full-data fine-tuning setting.
Question Answering (QA) is a longstanding challenge in natural language processing. Existing QA works mostly focus on specific question types, knowledge domains, or reasoning skills. The specialty in QA research hinders systems from modeling commonalities between tasks and generalization for wider applications. To address this issue, we present ProQA, a unified QA paradigm that solves various tasks through a single model. ProQA takes a unified structural prompt as the bridge and improves the QA-centric ability by structural prompt-based pre-training. Through a structurally designed prompt-based input schema, ProQA concurrently models the knowledge generalization for all QA tasks while keeping the knowledge customization for every specific QA task. Furthermore, ProQA is pre-trained with structural prompt-formatted large-scale synthesized corpus, which empowers the model with the commonly-required QA ability. Experimental results on 11 QA benchmarks demonstrate that ProQA consistently boosts performance on both full data fine-tuning, few-shot learning, and zero-shot testing scenarios. Furthermore, ProQA exhibits strong ability in both continual learning and transfer learning by taking the advantages of the structural prompt.
Adversarial training is an effective method to boost model robustness to malicious, adversarial attacks. However, such improvement in model robustness often leads to a significant sacrifice of standard performance on clean images. In many real-world applications such as health diagnosis and autonomous surgical robotics, the standard performance is more valued over model robustness against such extremely malicious attacks. This leads to the question: To what extent we can boost model robustness without sacrificing standard performance? This work tackles this problem and proposes a simple yet effective transfer learning-based adversarial training strategy that disentangles the negative effects of adversarial samples on model's standard performance. In addition, we introduce a training-friendly adversarial attack algorithm, which facilitates the boost of adversarial robustness without introducing significant training complexity. Extensive experimentation indicates that the proposed method outperforms previous adversarial training algorithms towards the target: to improve model robustness while preserving model's standard performance on clean data.
Pre-trained models for programming languages have recently demonstrated great success on code intelligence. To support both code-related understanding and generation tasks, recent works attempt to pre-train unified encoder-decoder models. However, such encoder-decoder framework is sub-optimal for auto-regressive tasks, especially code completion that requires a decoder-only manner for efficient inference. In this paper, we present UniXcoder, a unified cross-modal pre-trained model for programming language. The model utilizes mask attention matrices with prefix adapters to control the behavior of the model and leverages cross-modal contents like AST and code comment to enhance code representation. To encode AST that is represented as a tree in parallel, we propose a one-to-one mapping method to transform AST in a sequence structure that retains all structural information from the tree. Furthermore, we propose to utilize multi-modal contents to learn representation of code fragment with contrastive learning, and then align representations among programming languages using a cross-modal generation task. We evaluate UniXcoder on five code-related tasks over nine datasets. To further evaluate the performance of code fragment representation, we also construct a dataset for a new task, called zero-shot code-to-code search. Results show that our model achieves state-of-the-art performance on most tasks and analysis reveals that comment and AST can both enhance UniXcoder.