Abstract:As privacy and security take center stage in AI, machine unlearning, the ability to erase specific knowledge from models, has garnered increasing attention. However, existing methods overly prioritize efficiency and aggressive forgetting, which introduces notable limitations. In particular, radical interventions like gradient ascent, influence functions, and random label noise can destabilize model weights, leading to collapse and reduced reliability. To address this, we propose CUFG (Curriculum Unlearning via Forgetting Gradients), a novel framework that enhances the stability of approximate unlearning through innovations in both forgetting mechanisms and data scheduling strategies. Specifically, CUFG integrates a new gradient corrector guided by forgetting gradients for fine-tuning-based unlearning and a curriculum unlearning paradigm that progressively forgets from easy to hard. These innovations narrow the gap with the gold-standard Retrain method by enabling more stable and progressive unlearning, thereby improving both effectiveness and reliability. Furthermore, we believe that the concept of curriculum unlearning has substantial research potential and offers forward-looking insights for the development of the MU field. Extensive experiments across various forgetting scenarios validate the rationale and effectiveness of our approach and CUFG. Codes are available at https://anonymous.4open.science/r/CUFG-6375.
Abstract:Graph data in real-world scenarios undergo rapid and frequent changes, making it challenging for existing graph models to effectively handle the continuous influx of new data and accommodate data withdrawal requests. The approach to frequently retraining graph models is resource intensive and impractical. To address this pressing challenge, this paper introduces a new concept of graph memory learning. Its core idea is to enable a graph model to selectively remember new knowledge but forget old knowledge. Building on this approach, the paper presents a novel graph memory learning framework - Brain-inspired Graph Memory Learning (BGML), inspired by brain network dynamics and function-structure coupling strategies. BGML incorporates a multi-granular hierarchical progressive learning mechanism rooted in feature graph grain learning to mitigate potential conflict between memorization and forgetting in graph memory learning. This mechanism allows for a comprehensive and multi-level perception of local details within evolving graphs. In addition, to tackle the issue of unreliable structures in newly added incremental information, the paper introduces an information self-assessment ownership mechanism. This mechanism not only facilitates the propagation of incremental information within the model but also effectively preserves the integrity of past experiences. We design five types of graph memory learning tasks: regular, memory, unlearning, data-incremental, and class-incremental to evaluate BGML. Its excellent performance is confirmed through extensive experiments on multiple real-world node classification datasets.