Lattice
Abstract:Path planning for a nonholonomic mobile robot is a challenging problem. This paper proposes a novel space adaptive search (SAS) approach that greatly reduces the computation cost of nonholonomic mobile robot path planning. The classic search-based path planning only updates the state on the current location in each step, which is very inefficient, and, therefore, can easily be trapped by local minimum. The SAS updates not only the state of the current location, but also all states in the neighborhood, and the size of the neighborhood is adaptively varied based on the clearance around the current location at each step. Since a great deal of states can be immediately updated, the search can explore the local minimum and get rid of it very fast. As a result, the proposed approach can effectively deal with clustered environments with a large number of local minima. The SAS also utilizes a set of predefined motion primitives, and dynamically scales them into different sizes during the search to create various new primitives with differing sizes and curvatures. This greatly promotes the flexibility of the search of path planning in more complex environments. Unlike the A* family, which uses heuristic to accelerate the search, the experiments shows that the SAS requires much less computation time and memory cost even without heuristic than the weighted A* algorithm, while still preserving the optimality of the produced path. However, the SAS can also be applied together with heuristic or other path planning algorithms.
Abstract:Neuromorphic sensors, specifically event cameras, revolutionize visual data acquisition by capturing pixel intensity changes with exceptional dynamic range, minimal latency, and energy efficiency, setting them apart from conventional frame-based cameras. The distinctive capabilities of event cameras have ignited significant interest in the domain of event-based action recognition, recognizing their vast potential for advancement. However, the development in this field is currently slowed by the lack of comprehensive, large-scale datasets, which are critical for developing robust recognition frameworks. To bridge this gap, we introduces DailyDVS-200, a meticulously curated benchmark dataset tailored for the event-based action recognition community. DailyDVS-200 is extensive, covering 200 action categories across real-world scenarios, recorded by 47 participants, and comprises more than 22,000 event sequences. This dataset is designed to reflect a broad spectrum of action types, scene complexities, and data acquisition diversity. Each sequence in the dataset is annotated with 14 attributes, ensuring a detailed characterization of the recorded actions. Moreover, DailyDVS-200 is structured to facilitate a wide range of research paths, offering a solid foundation for both validating existing approaches and inspiring novel methodologies. By setting a new benchmark in the field, we challenge the current limitations of neuromorphic data processing and invite a surge of new approaches in event-based action recognition techniques, which paves the way for future explorations in neuromorphic computing and beyond. The dataset and source code are available at https://github.com/QiWang233/DailyDVS-200.
Abstract:Unsupervised graph-level anomaly detection (UGAD) has garnered increasing attention in recent years due to its significance. However, most existing methods only rely on traditional graph neural networks to explore pairwise relationships but such kind of pairwise edges are not enough to describe multifaceted relationships involving anomaly. There is an emergency need to exploit node group information which plays a crucial role in UGAD. In addition, most previous works ignore the global underlying properties (e.g., hierarchy and power-law structure) which are common in real-world graph datasets and therefore are indispensable factors on UGAD task. In this paper, we propose a novel Dual Hyperbolic Contrastive Learning for Unsupervised Graph-Level Anomaly Detection (HC-GLAD in short). To exploit node group connections, we construct hypergraphs based on gold motifs and subsequently perform hypergraph convolution. Furthermore, to preserve the hierarchy of real-world graphs, we introduce hyperbolic geometry into this field and conduct both graph and hypergraph embedding learning in hyperbolic space with hyperboloid model. To the best of our knowledge, this is the first work to simultaneously apply hypergraph with node group connections and hyperbolic geometry into this field. Extensive experiments on several real world datasets of different fields demonstrate the superiority of HC-GLAD on UGAD task. The code is available at https://github.com/Yali-F/HC-GLAD.
Abstract:Unsupervised graph-level anomaly detection (UGAD) has attracted increasing interest due to its widespread application. In recent studies, knowledge distillation-based methods have been widely used in unsupervised anomaly detection to improve model efficiency and generalization. However, the inherent symmetry between the source (teacher) and target (student) networks typically results in consistent outputs across both architectures, making it difficult to distinguish abnormal graphs from normal graphs. Also, existing methods mainly rely on graph features to distinguish anomalies, which may be unstable with complex and diverse data and fail to capture the essence that differentiates normal graphs from abnormal ones. In this work, we propose a Graph Normalizing Flows-driven Asymmetric Network For Unsupervised Graph-Level Anomaly Detection (FANFOLD in short). We introduce normalizing flows to unsupervised graph-level anomaly detection due to their successful application and superior quality in learning the underlying distribution of samples. Specifically, we adopt the knowledge distillation technique and apply normalizing flows on the source network, achieving the asymmetric network. In the training stage, FANFOLD transforms the original distribution of normal graphs to a standard normal distribution. During inference, FANFOLD computes the anomaly score using the source-target loss to discriminate between normal and anomalous graphs. We conduct extensive experiments on 15 datasets of different fields with 9 baseline methods to validate the superiority of FANFOLD.
Abstract:We present MIRReS, a novel two-stage inverse rendering framework that jointly reconstructs and optimizes the explicit geometry, material, and lighting from multi-view images. Unlike previous methods that rely on implicit irradiance fields or simplified path tracing algorithms, our method extracts an explicit geometry (triangular mesh) in stage one, and introduces a more realistic physically-based inverse rendering model that utilizes multi-bounce path tracing and Monte Carlo integration. By leveraging multi-bounce path tracing, our method effectively estimates indirect illumination, including self-shadowing and internal reflections, which improves the intrinsic decomposition of shape, material, and lighting. Moreover, we incorporate reservoir sampling into our framework to address the noise in Monte Carlo integration, enhancing convergence and facilitating gradient-based optimization with low sample counts. Through qualitative and quantitative evaluation of several scenarios, especially in challenging scenarios with complex shadows, we demonstrate that our method achieves state-of-the-art performance on decomposition results. Additionally, our optimized explicit geometry enables applications such as scene editing, relighting, and material editing with modern graphics engines or CAD software. The source code is available at https://brabbitdousha.github.io/MIRReS/
Abstract:Remote sensing shadow removal, which aims to recover contaminated surface information, is tricky since shadows typically display overwhelmingly low illumination intensities. In contrast, the infrared image is robust toward significant light changes, providing visual clues complementary to the visible image. Nevertheless, the existing methods ignore the collaboration between heterogeneous modalities, leading to undesired quality degradation. To fill this gap, we propose a weakly supervised shadow removal network with a spherical feature space, dubbed S2-ShadowNet, to explore the best of both worlds for visible and infrared modalities. Specifically, we employ a modal translation (visible-to-infrared) model to learn the cross-domain mapping, thus generating realistic infrared samples. Then, Swin Transformer is utilized to extract strong representational visible/infrared features. Simultaneously, the extracted features are mapped to the smooth spherical manifold, which alleviates the domain shift through regularization. Well-designed similarity loss and orthogonality loss are embedded into the spherical space, prompting the separation of private visible/infrared features and the alignment of shared visible/infrared features through constraints on both representation content and orientation. Such a manner encourages implicit reciprocity between modalities, thus providing a novel insight into shadow removal. Notably, ground truth is not available in practice, thus S2-ShadowNet is trained by cropping shadow and shadow-free patches from the shadow image itself, avoiding stereotypical and strict pair data acquisition. More importantly, we contribute a large-scale weakly supervised shadow removal benchmark, including 4000 shadow images with corresponding shadow masks.
Abstract:Scene graph generation (SGG) in satellite imagery (SAI) benefits promoting intelligent understanding of geospatial scenarios from perception to cognition. In SAI, objects exhibit great variations in scales and aspect ratios, and there exist rich relationships between objects (even between spatially disjoint objects), which makes it necessary to holistically conduct SGG in large-size very-high-resolution (VHR) SAI. However, the lack of SGG datasets with large-size VHR SAI has constrained the advancement of SGG in SAI. Due to the complexity of large-size VHR SAI, mining triplets <subject, relationship, object> in large-size VHR SAI heavily relies on long-range contextual reasoning. Consequently, SGG models designed for small-size natural imagery are not directly applicable to large-size VHR SAI. To address the scarcity of datasets, this paper constructs a large-scale dataset for SGG in large-size VHR SAI with image sizes ranging from 512 x 768 to 27,860 x 31,096 pixels, named RSG, encompassing over 210,000 objects and more than 400,000 triplets. To realize SGG in large-size VHR SAI, we propose a context-aware cascade cognition (CAC) framework to understand SAI at three levels: object detection (OBD), pair pruning and relationship prediction. As a fundamental prerequisite for SGG in large-size SAI, a holistic multi-class object detection network (HOD-Net) that can flexibly integrate multi-scale contexts is proposed. With the consideration that there exist a huge amount of object pairs in large-size SAI but only a minority of object pairs contain meaningful relationships, we design a pair proposal generation (PPG) network via adversarial reconstruction to select high-value pairs. Furthermore, a relationship prediction network with context-aware messaging (RPCM) is proposed to predict the relationship types of these pairs.
Abstract:Unmanned Surface Vehicles (USVs) are pivotal in marine exploration, but their sensors' accuracy is compromised by the dynamic marine environment. Traditional calibration methods fall short in these conditions. This paper introduces a deep learning architecture that predicts changes in the USV's dynamic metacenter and refines sensors' extrinsic parameters in real time using a Time-Sequence General Regression Neural Network (GRNN) with Euler angles as input. Simulation data from Unity3D ensures robust training and testing. Experimental results show that the Time-Sequence GRNN achieves the lowest mean squared error (MSE) loss, outperforming traditional neural networks. This method significantly enhances sensor calibration for USVs, promising improved data accuracy in challenging maritime conditions. Future work will refine the network and validate results with real-world data.
Abstract:The advancement of diffusion models has pushed the boundary of text-to-3D object generation. While it is straightforward to composite objects into a scene with reasonable geometry, it is nontrivial to texture such a scene perfectly due to style inconsistency and occlusions between objects. To tackle these problems, we propose a coarse-to-fine 3D scene texturing framework, referred to as RoomTex, to generate high-fidelity and style-consistent textures for untextured compositional scene meshes. In the coarse stage, RoomTex first unwraps the scene mesh to a panoramic depth map and leverages ControlNet to generate a room panorama, which is regarded as the coarse reference to ensure the global texture consistency. In the fine stage, based on the panoramic image and perspective depth maps, RoomTex will refine and texture every single object in the room iteratively along a series of selected camera views, until this object is completely painted. Moreover, we propose to maintain superior alignment between RGB and depth spaces via subtle edge detection methods. Extensive experiments show our method is capable of generating high-quality and diverse room textures, and more importantly, supporting interactive fine-grained texture control and flexible scene editing thanks to our inpainting-based framework and compositional mesh input. Our project page is available at https://qwang666.github.io/RoomTex/.
Abstract:Ubiquitous mobile devices are generating vast amounts of location-based service data that reveal how individuals navigate and utilize urban spaces in detail. In this study, we utilize these extensive, unlabeled sequences of user trajectories to develop a foundation model for understanding urban space and human mobility. We introduce the \textbf{P}retrained \textbf{M}obility \textbf{T}ransformer (PMT), which leverages the transformer architecture to process user trajectories in an autoregressive manner, converting geographical areas into tokens and embedding spatial and temporal information within these representations. Experiments conducted in three U.S. metropolitan areas over a two-month period demonstrate PMT's ability to capture underlying geographic and socio-demographic characteristics of regions. The proposed PMT excels across various downstream tasks, including next-location prediction, trajectory imputation, and trajectory generation. These results support PMT's capability and effectiveness in decoding complex patterns of human mobility, offering new insights into urban spatial functionality and individual mobility preferences.