This paper is focused on multiuser load modulation arrays (MU-LMAs) which are attractive due to their low system complexity and reduced cost for millimeter wave (mmWave) multi-input multi-output (MIMO) systems. The existing precoding algorithm for downlink MU-LMA relies on a sub-array structured (SAS) transmitter which may suffer from decreased degrees of freedom and complex system configuration. Furthermore, a conventional LMA codebook with codewords uniformly distributed on a hypersphere may not be channel-adaptive and may lead to increased signal detection complexity. In this paper, we conceive an MU-LMA system employing a full-array structured (FAS) transmitter and propose two algorithms accordingly. The proposed FAS-based system addresses the SAS structural problems and can support larger numbers of users. For LMA-imposed constant-power downlink precoding, we propose an FAS-based normalized block diagonalization (FAS-NBD) algorithm. However, the forced normalization may result in performance degradation. This degradation, together with the aforementioned codebook design problems, is difficult to solve analytically. This motivates us to propose a Deep Learning-enhanced (FAS-DL-NBD) algorithm for adaptive codebook design and codebook-independent decoding. It is shown that the proposed algorithms are robust to imperfect knowledge of channel state information and yield excellent error performance. Moreover, the FAS-DL-NBD algorithm enables signal detection with low complexity as the number of bits per codeword increases.
Box-supervised polyp segmentation attracts increasing attention for its cost-effective potential. Existing solutions often rely on learning-free methods or pretrained models to laboriously generate pseudo masks, triggering Dice constraint subsequently. In this paper, we found that a model guided by the simplest box-filled masks can accurately predict polyp locations/sizes, but suffers from shape collapsing. In response, we propose two innovative learning fashions, Improved Box-dice (IBox) and Contrastive Latent-Anchors (CLA), and combine them to train a robust box-supervised model IBoxCLA. The core idea behind IBoxCLA is to decouple the learning of location/size and shape, allowing for focused constraints on each of them. Specifically, IBox transforms the segmentation map into a proxy map using shape decoupling and confusion-region swapping sequentially. Within the proxy map, shapes are disentangled, while locations/sizes are encoded as box-like responses. By constraining the proxy map instead of the raw prediction, the box-filled mask can well supervise IBoxCLA without misleading its shape learning. Furthermore, CLA contributes to shape learning by generating two types of latent anchors, which are learned and updated using momentum and segmented polyps to steadily represent polyp and background features. The latent anchors facilitate IBoxCLA to capture discriminative features within and outside boxes in a contrastive manner, yielding clearer boundaries. We benchmark IBoxCLA on five public polyp datasets. The experimental results demonstrate the competitive performance of IBoxCLA compared to recent fully-supervised polyp segmentation methods, and its superiority over other box-supervised state-of-the-arts with a relative increase of overall mDice and mIoU by at least 6.5% and 7.5%, respectively.
Class imbalance exists in many classification problems, and since the data is designed for accuracy, imbalance in data classes can lead to classification challenges with a few classes having higher misclassification costs. The Backblaze dataset, a widely used dataset related to hard discs, has a small amount of failure data and a large amount of health data, which exhibits a serious class imbalance. This paper provides a comprehensive overview of research in the field of imbalanced data classification. The discussion is organized into three main aspects: data-level methods, algorithmic-level methods, and hybrid methods. For each type of method, we summarize and analyze the existing problems, algorithmic ideas, strengths, and weaknesses. Additionally, the challenges of unbalanced data classification are discussed, along with strategies to address them. It is convenient for researchers to choose the appropriate method according to their needs.
The lack of standardized robustness metrics and the widespread reliance on numerous unrelated benchmark datasets for testing have created a gap between academically validated robust models and their often problematic practical adoption. To address this, we introduce XIMAGENET-12, an explainable benchmark dataset with over 200K images and 15,600 manual semantic annotations. Covering 12 categories from ImageNet to represent objects commonly encountered in practical life and simulating six diverse scenarios, including overexposure, blurring, color changing, etc., we further propose a novel robustness criterion that extends beyond model generation ability assessment. This benchmark dataset, along with related code, is available at https://sites.google.com/view/ximagenet-12/home. Researchers and practitioners can leverage this resource to evaluate the robustness of their visual models under challenging conditions and ultimately benefit from the demands of practical computer vision systems.
Recently, intelligent reflecting surface (IRS)-assisted communication has gained considerable attention due to its advantage in extending the coverage and compensating the path loss with low-cost passive metasurface. This paper considers the uplink channel estimation for IRS-aided multiuser massive MISO communications with one-bit ADCs at the base station (BS). The use of one-bit ADC is impelled by the low-cost and power efficient implementation of massive antennas techniques. However, the passiveness of IRS and the lack of signal level information after one-bit quantization make the IRS channel estimation challenging. To tackle this problem, we exploit the structured sparsity of the user-IRS-BS cascaded channels and develop three channel estimators, each of which utilizes the structured sparsity at different levels. Specifically, the first estimator exploits the elementwise sparsity of the cascaded channel and employs the sparse Bayesian learning (SBL) to infer the channel responses via the type-II maximum likelihood (ML) estimation. However, due to the one-bit quantization, the type-II ML in general is intractable. As such, a variational expectation-maximization (EM) algorithm is custom-derived to iteratively compute an ML solution. The second estimator utilizes the common row-structured sparsity induced by the IRS-to-BS channel shared among the users, and develops another type-II ML solution via the block SBL (BSBL) and the variational EM. To further improve the performance of BSBL, a third two-stage estimator is proposed, which can utilize both the common row-structured sparsity and the column-structured sparsity arising from the limited scattering around the users. Simulation results show that the more diverse structured sparsity is exploited, the better estimation performance is achieved, and that the proposed estimators are superior to state-of-the-art one-bit estimators.
Terrestrial robots, i.e., unmanned ground vehicles (UGVs), and aerial robots, i.e., unmanned aerial vehicles (UAVs), operate in separate spaces. To exploit their complementary features (e.g., fields of views, communication links, computing capabilities), a promising paradigm termed integrated robotics network emerges, which provides communications for cooperative UAVs-UGVs applications. However, how to efficiently deploy UAVs and schedule the UAVs-UGVs connections according to different UGV tasks become challenging. In this paper, we propose a sum-rate maximization problem, where UGVs plan their trajectories autonomously and are dynamically associated with UAVs according to their planned trajectories. Although the problem is a NP-hard mixed integer program, a fast polynomial time algorithm using alternating gradient descent and penalty-based binary relaxation, is devised. Simulation results demonstrate the effectiveness of the proposed algorithm.
With the development of deep learning techniques, supervised learning has achieved performances surpassing those of humans. Researchers have designed numerous corresponding models for different data modalities, achieving excellent results in supervised tasks. However, with the exponential increase of data in multiple fields, the recognition and classification of unlabeled data have gradually become a hot topic. In this paper, we employed a Reinforcement Learning framework to simulate the cognitive processes of humans for effectively addressing novel class discovery in the Open-set domain. We deployed a Member-to-Leader Multi-Agent framework to extract and fuse features from multi-modal information, aiming to acquire a more comprehensive understanding of the feature space. Furthermore, this approach facilitated the incorporation of self-supervised learning to enhance model training. We employed a clustering method with varying constraint conditions, ranging from strict to loose, allowing for the generation of dependable labels for a subset of unlabeled data during the training phase. This iterative process is similar to human exploratory learning of unknown data. These mechanisms collectively update the network parameters based on rewards received from environmental feedback. This process enables effective control over the extent of exploration learning, ensuring the accuracy of learning in unknown data categories. We demonstrate the performance of our approach in both the 3D and 2D domains by employing the OS-MN40, OS-MN40-Miss, and Cifar10 datasets. Our approach achieves competitive competitive results.
Mammogram image is important for breast cancer screening, and typically obtained in a dual-view form, i.e., cranio-caudal (CC) and mediolateral oblique (MLO), to provide complementary information. However, previous methods mostly learn features from the two views independently, which violates the clinical knowledge and ignores the importance of dual-view correlation. In this paper, we propose a dual-view correlation hybrid attention network (DCHA-Net) for robust holistic mammogram classification. Specifically, DCHA-Net is carefully designed to extract and reinvent deep features for the two views, and meanwhile to maximize the underlying correlations between them. A hybrid attention module, consisting of local relation and non-local attention blocks, is proposed to alleviate the spatial misalignment of the paired views in the correlation maximization. A dual-view correlation loss is introduced to maximize the feature similarity between corresponding strip-like regions with equal distance to the chest wall, motivated by the fact that their features represent the same breast tissues, and thus should be highly-correlated. Experimental results on two public datasets, i.e., INbreast and CBIS-DDSM, demonstrate that DCHA-Net can well preserve and maximize feature correlations across views, and thus outperforms the state-of-the-arts for classifying a whole mammogram as malignant or not.
The networks for point cloud tasks are expected to be invariant when the point clouds are affinely transformed such as rotation and reflection. So far, relative to the rotational invariance that has been attracting major research attention in the past years, the reflection invariance is little addressed. Notwithstanding, reflection symmetry can find itself in very common and important scenarios, e.g., static reflection symmetry of structured streets, dynamic reflection symmetry from bidirectional motion of moving objects (such as pedestrians), and left- and right-hand traffic practices in different countries. To the best of our knowledge, unfortunately, no reflection-invariant network has been reported in point cloud analysis till now. To fill this gap, we propose a framework by using quadratic neurons and PCA canonical representation, referred to as Cloud-RAIN, to endow point \underline{Cloud} models with \underline{R}eflection\underline{A}l \underline{IN}variance. We prove a theorem to explain why Cloud-RAIN can enjoy reflection symmetry. Furthermore, extensive experiments also corroborate the reflection property of the proposed Cloud-RAIN and show that Cloud-RAIN is superior to data augmentation. Our code is available at https://github.com/YimingCuiCuiCui/Cloud-RAIN.