Tony
Abstract:This paper explores the application of movable antenna (MA), a cutting-edge technology with the capability of altering antenna positions, in a symbiotic radio (SR) system enabled by reconfigurable intelligent surface (RIS). The goal is to fully exploit the capabilities of both MA and RIS, constructing a better transmission environment for the co-existing primary and secondary transmission systems. For both parasitic SR (PSR) and commensal SR (CSR) scenarios with the channel uncertainties experienced by all transmission links, we design a robust transmission scheme with the goal of maximizing the primary rate while ensuring the secondary transmission quality. To address the maximization problem with thorny non-convex characteristics, we propose an alternating optimization framework that utilizes the General S-Procedure, General Sign-Definiteness Principle, successive convex approximation (SCA), and simulated annealing (SA) improved particle swarm optimization (SA-PSO) algorithms. Numerical results validate that the CSR scenario significantly outperforms the PSR scenario in terms of primary rate, and also show that compared to the fixed-position antenna scheme, the proposed MA scheme can increase the primary rate by 1.62 bps/Hz and 2.37 bps/Hz for the PSR and CSR scenarios, respectively.
Abstract:Multimodal Aspect-Based Sentiment Analysis (MABSA) seeks to extract fine-grained information from image-text pairs to identify aspect terms and determine their sentiment polarity. However, existing approaches often fall short in simultaneously addressing three core challenges: Sentiment Cue Perception (SCP), Multimodal Information Misalignment (MIM), and Semantic Noise Elimination (SNE). To overcome these limitations, we propose DASCO (\textbf{D}ependency Structure \textbf{A}ugmented \textbf{Sco}ping Framework), a fine-grained scope-oriented framework that enhances aspect-level sentiment reasoning by leveraging dependency parsing trees. First, we designed a multi-task pretraining strategy for MABSA on our base model, combining aspect-oriented enhancement, image-text matching, and aspect-level sentiment-sensitive cognition. This improved the model's perception of aspect terms and sentiment cues while achieving effective image-text alignment, addressing key challenges like SCP and MIM. Furthermore, we incorporate dependency trees as syntactic branch combining with semantic branch, guiding the model to selectively attend to critical contextual elements within a target-specific scope while effectively filtering out irrelevant noise for addressing SNE problem. Extensive experiments on two benchmark datasets across three subtasks demonstrate that DASCO achieves state-of-the-art performance in MABSA, with notable gains in JMASA (+3.1\% F1 and +5.4\% precision on Twitter2015).
Abstract:Large language models (LLMs) have shown promise in automating travel planning, yet they often fall short in addressing nuanced spatiotemporal rationality. While existing benchmarks focus on basic plan validity, they neglect critical aspects such as route efficiency, POI appeal, and real-time adaptability. This paper introduces TP-RAG, the first benchmark tailored for retrieval-augmented, spatiotemporal-aware travel planning. Our dataset includes 2,348 real-world travel queries, 85,575 fine-grain annotated POIs, and 18,784 high-quality travel trajectory references sourced from online tourist documents, enabling dynamic and context-aware planning. Through extensive experiments, we reveal that integrating reference trajectories significantly improves spatial efficiency and POI rationality of the travel plan, while challenges persist in universality and robustness due to conflicting references and noisy data. To address these issues, we propose EvoRAG, an evolutionary framework that potently synergizes diverse retrieved trajectories with LLMs' intrinsic reasoning. EvoRAG achieves state-of-the-art performance, improving spatiotemporal compliance and reducing commonsense violation compared to ground-up and retrieval-augmented baselines. Our work underscores the potential of hybridizing Web knowledge with LLM-driven optimization, paving the way for more reliable and adaptive travel planning agents.
Abstract:With the rapid development of the logistics industry, the path planning of logistics vehicles has become increasingly complex, requiring consideration of multiple constraints such as time windows, task sequencing, and motion smoothness. Traditional path planning methods often struggle to balance these competing demands efficiently. In this paper, we propose a path planning technique based on the Ant Colony Optimization (ACO) algorithm to address these challenges. The proposed method optimizes key performance metrics, including path length, task completion time, turning counts, and motion smoothness, to ensure efficient and practical route planning for logistics vehicles. Experimental results demonstrate that the ACO-based approach outperforms traditional methods in terms of both efficiency and adaptability. This study provides a robust solution for logistics vehicle path planning, offering significant potential for real-world applications in dynamic and constrained environments.
Abstract:In this paper, we propose Scene Splatter, a momentum-based paradigm for video diffusion to generate generic scenes from single image. Existing methods, which employ video generation models to synthesize novel views, suffer from limited video length and scene inconsistency, leading to artifacts and distortions during further reconstruction. To address this issue, we construct noisy samples from original features as momentum to enhance video details and maintain scene consistency. However, for latent features with the perception field that spans both known and unknown regions, such latent-level momentum restricts the generative ability of video diffusion in unknown regions. Therefore, we further introduce the aforementioned consistent video as a pixel-level momentum to a directly generated video without momentum for better recovery of unseen regions. Our cascaded momentum enables video diffusion models to generate both high-fidelity and consistent novel views. We further finetune the global Gaussian representations with enhanced frames and render new frames for momentum update in the next step. In this manner, we can iteratively recover a 3D scene, avoiding the limitation of video length. Extensive experiments demonstrate the generalization capability and superior performance of our method in high-fidelity and consistent scene generation.
Abstract:In this paper, we propose a novel variational model for decomposing images into their respective cartoon and texture parts. Our model characterizes certain non-local features of any Bounded Variation (BV) image by its Total Symmetric Variation (TSV). We demonstrate that TSV is effective in identifying regional boundaries. Based on this property, we introduce a weighted Meyer's $G$-norm to identify texture interiors without including contour edges. For BV images with bounded TSV, we show that the proposed model admits a solution. Additionally, we design a fast algorithm based on operator-splitting to tackle the associated non-convex optimization problem. The performance of our method is validated by a series of numerical experiments.
Abstract:We introduce UGen, a unified autoregressive multimodal model that demonstrates strong performance across text processing, image understanding, and image generation tasks simultaneously. UGen converts both texts and images into discrete token sequences and utilizes a single transformer to generate them uniformly in an autoregressive manner. To address the challenges associated with unified multimodal learning, UGen is trained using a novel mechanism, namely progressive vocabulary learning. In this process, visual token IDs are incrementally activated and integrated into the training phase, ultimately enhancing the effectiveness of unified multimodal learning. Experiments on comprehensive text and image tasks show that UGen achieves a significant overall performance improvement of 13.3% compared to the vanilla unified autoregressive method, and it also delivers competitive results across all tasks against several task-specific models.
Abstract:Graph Anomaly Detection (GAD) plays a vital role in various data mining applications such as e-commerce fraud prevention and malicious user detection. Recently, Graph Neural Network (GNN) based approach has demonstrated great effectiveness in GAD by first encoding graph data into low-dimensional representations and then identifying anomalies under the guidance of supervised or unsupervised signals. However, existing GNN-based approaches implicitly follow the homophily principle (i.e., the "like attracts like" phenomenon) and fail to learn discriminative embedding for anomalies that connect vast normal nodes. Moreover, such approaches identify anomalies in a unified global perspective but overlook diversified abnormal patterns conditioned on local graph context, leading to suboptimal performance. To overcome the aforementioned limitations, in this paper, we propose a Multi-hypersphere Heterophilic Graph Learning (MHetGL) framework for unsupervised GAD. Specifically, we first devise a Heterophilic Graph Encoding (HGE) module to learn distinguishable representations for potential anomalies by purifying and augmenting their neighborhood in a fully unsupervised manner. Then, we propose a Multi-Hypersphere Learning (MHL) module to enhance the detection capability for context-dependent anomalies by jointly incorporating critical patterns from both global and local perspectives. Extensive experiments on ten real-world datasets show that MHetGL outperforms 14 baselines. Our code is publicly available at https://github.com/KennyNH/MHetGL.
Abstract:Traffic Signal Control (TSC) plays a critical role in urban traffic management by optimizing traffic flow and mitigating congestion. While Large Language Models (LLMs) have recently emerged as promising tools for TSC due to their exceptional problem-solving and generalization capabilities, existing approaches fail to address the essential need for inter-agent coordination, limiting their effectiveness in achieving network-wide optimization. To bridge this gap, we propose CoLLMLight, a cooperative LLM agent framework for TSC. Specifically, we first construct a structured spatiotemporal graph to capture real-time traffic dynamics and spatial relationships among neighboring intersections, enabling the LLM to reason about complex traffic interactions. Moreover, we introduce a complexity-aware reasoning mechanism that dynamically adapts reasoning depth based on real-time traffic conditions, ensuring optimal computational efficiency without sacrificing decision quality. Besides, we propose a fine-tuning strategy that leverages iterative simulation-driven data collection and environmental feedback to build a lightweight LLM tailored for cooperative TSC. Extensive experiments on both synthetic and real-world datasets demonstrate that CoLLMLight outperforms state-of-the-art methods in diverse traffic scenarios, showcasing its effectiveness, scalability, and robustness.
Abstract:With the continuous advancement of human exploration into deep space, intelligent perception and high-precision segmentation technology for on-orbit multi-spacecraft targets have become critical factors for ensuring the success of modern space missions. However, the complex deep space environment, diverse imaging conditions, and high variability in spacecraft morphology pose significant challenges to traditional segmentation methods. This paper proposes SpaceSeg, an innovative vision foundation model-based segmentation framework with four core technical innovations: First, the Multi-Scale Hierarchical Attention Refinement Decoder (MSHARD) achieves high-precision feature decoding through cross-resolution feature fusion via hierarchical attention. Second, the Multi-spacecraft Connected Component Analysis (MS-CCA) effectively resolves topological structure confusion in dense targets. Third, the Spatial Domain Adaptation Transform framework (SDAT) eliminates cross-domain disparities and resist spatial sensor perturbations through composite enhancement strategies. Finally, a custom Multi-Spacecraft Segmentation Task Loss Function is created to significantly improve segmentation robustness in deep space scenarios. To support algorithm validation, we construct the first multi-scale on-orbit multi-spacecraft semantic segmentation dataset SpaceES, which covers four types of spatial backgrounds and 17 typical spacecraft targets. In testing, SpaceSeg achieves state-of-the-art performance with 89.87$\%$ mIoU and 99.98$\%$ mAcc, surpassing existing best methods by 5.71 percentage points. The dataset and code are open-sourced at https://github.com/Akibaru/SpaceSeg to provide critical technical support for next-generation space situational awareness systems.