Abstract:Parking is a critical task for autonomous driving systems (ADS), with unique challenges in crowded parking slots and GPS-denied environments. However, existing works focus on 2D parking slot perception, mapping, and localization, 3D reconstruction remains underexplored, which is crucial for capturing complex spatial geometry in parking scenarios. Naively improving the visual quality of reconstructed parking scenes does not directly benefit autonomous parking, as the key entry point for parking is the slots perception module. To address these limitations, we curate the first benchmark named ParkRecon3D, specifically designed for parking scene reconstruction. It includes sensor data from four surround-view fisheye cameras with calibrated extrinsics and dense parking slot annotations. We then propose ParkGaussian, the first framework that integrates 3D Gaussian Splatting (3DGS) for parking scene reconstruction. To further improve the alignment between reconstruction and downstream parking slot detection, we introduce a slot-aware reconstruction strategy that leverages existing parking perception methods to enhance the synthesis quality of slot regions. Experiments on ParkRecon3D demonstrate that ParkGaussian achieves state-of-the-art reconstruction quality and better preserves perception consistency for downstream tasks. The code and dataset will be released at: https://github.com/wm-research/ParkGaussian
Abstract:World models have become crucial for autonomous driving, as they learn how scenarios evolve over time to address the long-tail challenges of the real world. However, current approaches relegate world models to limited roles: they operate within ostensibly unified architectures that still keep world prediction and motion planning as decoupled processes. To bridge this gap, we propose DriveLaW, a novel paradigm that unifies video generation and motion planning. By directly injecting the latent representation from its video generator into the planner, DriveLaW ensures inherent consistency between high-fidelity future generation and reliable trajectory planning. Specifically, DriveLaW consists of two core components: DriveLaW-Video, our powerful world model that generates high-fidelity forecasting with expressive latent representations, and DriveLaW-Act, a diffusion planner that generates consistent and reliable trajectories from the latent of DriveLaW-Video, with both components optimized by a three-stage progressive training strategy. The power of our unified paradigm is demonstrated by new state-of-the-art results across both tasks. DriveLaW not only advances video prediction significantly, surpassing best-performing work by 33.3% in FID and 1.8% in FVD, but also achieves a new record on the NAVSIM planning benchmark.
Abstract:Vision-centric autonomous driving systems rely on diverse and scalable training data to achieve robust performance. While video object editing offers a promising path for data augmentation, existing methods often struggle to maintain both high visual fidelity and temporal coherence. In this work, we propose \textbf{Mirage}, a one-step video diffusion model for photorealistic and coherent asset editing in driving scenes. Mirage builds upon a text-to-video diffusion prior to ensure temporal consistency across frames. However, 3D causal variational autoencoders often suffer from degraded spatial fidelity due to compression, and directly passing 3D encoder features to decoder layers breaks temporal causality. To address this, we inject temporally agnostic latents from a pretrained 2D encoder into the 3D decoder to restore detail while preserving causal structures. Furthermore, because scene objects and inserted assets are optimized under different objectives, their Gaussians exhibit a distribution mismatch that leads to pose misalignment. To mitigate this, we introduce a two-stage data alignment strategy combining coarse 3D alignment and fine 2D refinement, thereby improving alignment and providing cleaner supervision. Extensive experiments demonstrate that Mirage achieves high realism and temporal consistency across diverse editing scenarios. Beyond asset editing, Mirage can also generalize to other video-to-video translation tasks, serving as a reliable baseline for future research. Our code is available at https://github.com/wm-research/mirage.
Abstract:Reasoning distillation has attracted increasing attention. It typically leverages a large teacher model to generate reasoning paths, which are then used to fine-tune a student model so that it mimics the teacher's behavior in training contexts. However, previous approaches have lacked a detailed analysis of the origins of the distilled model's capabilities. It remains unclear whether the student can maintain consistent behaviors with the teacher in novel test-time contexts, or whether it regresses to its original output patterns, raising concerns about the generalization of distillation models. To analyse this question, we introduce a cross-model Reasoning Distillation Provenance Tracing framework. For each action (e.g., a sentence) produced by the distilled model, we obtain the predictive probabilities assigned by the teacher, the original student, and the distilled model under the same context. By comparing these probabilities, we classify each action into different categories. By systematically disentangling the provenance of each action, we experimentally demonstrate that, in test-time contexts, the distilled model can indeed generate teacher-originated actions, which correlate with and plausibly explain observed performance on distilled model. Building on this analysis, we further propose a teacher-guided data selection method. Unlike prior approach that rely on heuristics, our method directly compares teacher-student divergences on the training data, providing a principled selection criterion. We validate the effectiveness of our approach across multiple representative teacher models and diverse student models. The results highlight the utility of our provenance-tracing framework and underscore its promise for reasoning distillation. We hope to share Reasoning Distillation Provenance Tracing and our insights into reasoning distillation with the community.




Abstract:Current Vision-Language-Action (VLA) paradigms in autonomous driving primarily rely on Imitation Learning (IL), which introduces inherent challenges such as distribution shift and causal confusion. Online Reinforcement Learning offers a promising pathway to address these issues through trial-and-error learning. However, applying online reinforcement learning to VLA models in autonomous driving is hindered by inefficient exploration in continuous action spaces. To overcome this limitation, we propose MindDrive, a VLA framework comprising a large language model (LLM) with two distinct sets of LoRA parameters. The one LLM serves as a Decision Expert for scenario reasoning and driving decision-making, while the other acts as an Action Expert that dynamically maps linguistic decisions into feasible trajectories. By feeding trajectory-level rewards back into the reasoning space, MindDrive enables trial-and-error learning over a finite set of discrete linguistic driving decisions, instead of operating directly in a continuous action space. This approach effectively balances optimal decision-making in complex scenarios, human-like driving behavior, and efficient exploration in online reinforcement learning. Using the lightweight Qwen-0.5B LLM, MindDrive achieves Driving Score (DS) of 78.04 and Success Rate (SR) of 55.09% on the challenging Bench2Drive benchmark. To the best of our knowledge, this is the first work to demonstrate the effectiveness of online reinforcement learning for the VLA model in autonomous driving.




Abstract:Multimodal Misinformation Detection (MMD) refers to the task of detecting social media posts involving misinformation, where the post often contains text and image modalities. However, by observing the MMD posts, we hold that the text modality may be much more informative than the image modality because the text generally describes the whole event/story of the current post but the image often presents partial scenes only. Our preliminary empirical results indicate that the image modality exactly contributes less to MMD. Upon this idea, we propose a new MMD method named RETSIMD. Specifically, we suppose that each text can be divided into several segments, and each text segment describes a partial scene that can be presented by an image. Accordingly, we split the text into a sequence of segments, and feed these segments into a pre-trained text-to-image generator to augment a sequence of images. We further incorporate two auxiliary objectives concerning text-image and image-label mutual information, and further post-train the generator over an auxiliary text-to-image generation benchmark dataset. Additionally, we propose a graph structure by defining three heuristic relationships between images, and use a graph neural network to generate the fused features. Extensive empirical results validate the effectiveness of RETSIMD.
Abstract:Despite significant progress in Video Large Language Models (Video-LLMs) for offline video understanding, existing online Video-LLMs typically struggle to simultaneously process continuous frame-by-frame inputs and determine optimal response timing, often compromising real-time responsiveness and narrative coherence. To address these limitations, we introduce LiveStar, a pioneering live streaming assistant that achieves always-on proactive responses through adaptive streaming decoding. Specifically, LiveStar incorporates: (1) a training strategy enabling incremental video-language alignment for variable-length video streams, preserving temporal consistency across dynamically evolving frame sequences; (2) a response-silence decoding framework that determines optimal proactive response timing via a single forward pass verification; (3) memory-aware acceleration via peak-end memory compression for online inference on 10+ minute videos, combined with streaming key-value cache to achieve 1.53x faster inference. We also construct an OmniStar dataset, a comprehensive dataset for training and benchmarking that encompasses 15 diverse real-world scenarios and 5 evaluation tasks for online video understanding. Extensive experiments across three benchmarks demonstrate LiveStar's state-of-the-art performance, achieving an average 19.5% improvement in semantic correctness with 18.1% reduced timing difference compared to existing online Video-LLMs, while improving FPS by 12.0% across all five OmniStar tasks. Our model and dataset can be accessed at https://github.com/yzy-bupt/LiveStar.
Abstract:Recent advancements in driving world models enable controllable generation of high-quality RGB videos or multimodal videos. Existing methods primarily focus on metrics related to generation quality and controllability. However, they often overlook the evaluation of downstream perception tasks, which are $\mathbf{really\ crucial}$ for the performance of autonomous driving. Existing methods usually leverage a training strategy that first pretrains on synthetic data and finetunes on real data, resulting in twice the epochs compared to the baseline (real data only). When we double the epochs in the baseline, the benefit of synthetic data becomes negligible. To thoroughly demonstrate the benefit of synthetic data, we introduce Dream4Drive, a novel synthetic data generation framework designed for enhancing the downstream perception tasks. Dream4Drive first decomposes the input video into several 3D-aware guidance maps and subsequently renders the 3D assets onto these guidance maps. Finally, the driving world model is fine-tuned to produce the edited, multi-view photorealistic videos, which can be used to train the downstream perception models. Dream4Drive enables unprecedented flexibility in generating multi-view corner cases at scale, significantly boosting corner case perception in autonomous driving. To facilitate future research, we also contribute a large-scale 3D asset dataset named DriveObj3D, covering the typical categories in driving scenarios and enabling diverse 3D-aware video editing. We conduct comprehensive experiments to show that Dream4Drive can effectively boost the performance of downstream perception models under various training epochs. Project: $\href{https://wm-research.github.io/Dream4Drive/}{this\ https\ URL}$




Abstract:This paper presents Pixel-Perfect Depth, a monocular depth estimation model based on pixel-space diffusion generation that produces high-quality, flying-pixel-free point clouds from estimated depth maps. Current generative depth estimation models fine-tune Stable Diffusion and achieve impressive performance. However, they require a VAE to compress depth maps into latent space, which inevitably introduces \textit{flying pixels} at edges and details. Our model addresses this challenge by directly performing diffusion generation in the pixel space, avoiding VAE-induced artifacts. To overcome the high complexity associated with pixel-space generation, we introduce two novel designs: 1) Semantics-Prompted Diffusion Transformers (SP-DiT), which incorporate semantic representations from vision foundation models into DiT to prompt the diffusion process, thereby preserving global semantic consistency while enhancing fine-grained visual details; and 2) Cascade DiT Design that progressively increases the number of tokens to further enhance efficiency and accuracy. Our model achieves the best performance among all published generative models across five benchmarks, and significantly outperforms all other models in edge-aware point cloud evaluation.
Abstract:3D Gaussian Splatting (3DGS) has recently emerged as a powerful paradigm for photorealistic view synthesis, representing scenes with spatially distributed Gaussian primitives. While highly effective for rendering, achieving accurate and complete surface reconstruction remains challenging due to the unstructured nature of the representation and the absence of explicit geometric supervision. In this work, we propose DiGS, a unified framework that embeds Signed Distance Field (SDF) learning directly into the 3DGS pipeline, thereby enforcing strong and interpretable surface priors. By associating each Gaussian with a learnable SDF value, DiGS explicitly aligns primitives with underlying geometry and improves cross-view consistency. To further ensure dense and coherent coverage, we design a geometry-guided grid growth strategy that adaptively distributes Gaussians along geometry-consistent regions under a multi-scale hierarchy. Extensive experiments on standard benchmarks, including DTU, Mip-NeRF 360, and Tanks& Temples, demonstrate that DiGS consistently improves reconstruction accuracy and completeness while retaining high rendering fidelity.