Abstract:We present UniRef-Image-Edit, a high-performance multi-modal generation system that unifies single-image editing and multi-image composition within a single framework. Existing diffusion-based editing methods often struggle to maintain consistency across multiple conditions due to limited interaction between reference inputs. To address this, we introduce Sequence-Extended Latent Fusion (SELF), a unified input representation that dynamically serializes multiple reference images into a coherent latent sequence. During a dedicated training stage, all reference images are jointly constrained to fit within a fixed-length sequence under a global pixel-budget constraint. Building upon SELF, we propose a two-stage training framework comprising supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we jointly train on single-image editing and multi-image composition tasks to establish a robust generative prior. We adopt a progressive sequence length training strategy, in which all input images are initially resized to a total pixel budget of $1024^2$, and are then gradually increased to $1536^2$ and $2048^2$ to improve visual fidelity and cross-reference consistency. This gradual relaxation of compression enables the model to incrementally capture finer visual details while maintaining stable alignment across references. For the RL stage, we introduce Multi-Source GRPO (MSGRPO), to our knowledge the first reinforcement learning framework tailored for multi-reference image generation. MSGRPO optimizes the model to reconcile conflicting visual constraints, significantly enhancing compositional consistency. We will open-source the code, models, training data, and reward data for community research purposes.
Abstract:Awakening dormant users, who remain engaged but exhibit low conversion, is a pivotal driver for incremental GMV growth in large-scale e-commerce platforms. However, existing approaches often yield suboptimal results since they typically rely on single-step estimation of an item's intrinsic value (e.g., immediate click probability). This mechanism overlooks the instrumental effect of items, where specific interactions act as triggers to shape latent intent and drive subsequent decisions along a conversion trajectory. To bridge this gap, we propose RoleGen, a novel framework that synergizes a Conversion Trajectory Reasoner with a Generative Behavioral Backbone. Specifically, the LLM-based Reasoner explicitly models the context-dependent Functional Role of items to reconstruct intent evolution. It further employs counterfactual inference to simulate diverse conversion paths, effectively mitigating interest collapse. These reasoned candidate items are integrated into the generative backbone, which is optimized via a collaborative "Reasoning-Execution-Feedback-Reflection" closed-loop strategy to ensure grounded execution. Extensive offline experiments and online A/B testing on the Kuaishou e-commerce platform demonstrate that RoleGen achieves a 6.2% gain in Recall@1 and a 7.3% increase in online order volume, confirming its effectiveness in activating the dormant user base.
Abstract:While diffusion models have shown exceptional capabilities in aesthetic image synthesis, they often struggle with complex spatial understanding and reasoning. Existing approaches resort to Multimodal Large Language Models (MLLMs) to enhance this capability. However, they either incur high computational costs through joint training or suffer from spatial information loss when relying solely on textual prompts. To alleviate these limitations, we propose a Spatial Chain-of-Thought (SCoT) framework, a plug-and-play approach that effectively bridges the reasoning capabilities of MLLMs with the generative power of diffusion models. Specifically, we first enhance the diffusion model's layout awareness by training it on an interleaved text-coordinate instruction format. We then leverage state-of-the-art MLLMs as planners to generate comprehensive layout plans, transferring their spatial planning capabilities directly to the generation process. Extensive experiments demonstrate that our method achieves state-of-the-art performance on image generation benchmarks and significantly outperforms baselines on complex reasoning tasks, while also showing strong efficacy in image editing scenarios.
Abstract:With the evolution of large language models (LLMs), there is growing interest in leveraging their rich semantic understanding to enhance industrial recommendation systems (RecSys). Traditional RecSys relies on ID-based embeddings for user sequence modeling in the General Search Unit (GSU) and Exact Search Unit (ESU) paradigm, which suffers from low information density, knowledge isolation, and weak generalization ability. While LLMs offer complementary strengths with dense semantic representations and strong generalization, directly applying LLM embeddings to RecSys faces critical challenges: representation unmatch with business objectives and representation unlearning end-to-end with downstream tasks. In this paper, we present QARM V2, a unified framework that bridges LLM semantic understanding with RecSys business requirements for user sequence modeling.
Abstract:In long-video understanding, conventional uniform frame sampling often fails to capture key visual evidence, leading to degraded performance and increased hallucinations. To address this, recent agentic thinking-with-videos paradigms have emerged, adopting a localize-clip-answer pipeline in which the model actively identifies relevant video segments, performs dense sampling within those clips, and then produces answers. However, existing methods remain inefficient, suffer from weak localization, and adhere to rigid workflows. To solve these issues, we propose VideoTemp-o3, a unified agentic thinking-with-videos framework that jointly models video grounding and question answering. VideoTemp-o3 exhibits strong localization capability, supports on-demand clipping, and can refine inaccurate localizations. Specifically, in the supervised fine-tuning stage, we design a unified masking mechanism that encourages exploration while preventing noise. For reinforcement learning, we introduce dedicated rewards to mitigate reward hacking. Besides, from the data perspective, we develop an effective pipeline to construct high-quality long video grounded QA data, along with a corresponding benchmark for systematic evaluation across various video durations. Experimental results demonstrate that our method achieves remarkable performance on both long video understanding and grounding.
Abstract:Reward models are critical for reinforcement learning from human feedback, as they determine the alignment quality and reliability of generative models. For complex tasks such as image editing, reward models are required to capture global semantic consistency and implicit logical constraints beyond local similarity. Existing reward modeling approaches have clear limitations. Discriminative reward models align well with human preferences but struggle with complex semantics due to limited reasoning supervision. Generative reward models offer stronger semantic understanding and reasoning, but they are costly at inference time and difficult to align directly with human preferences. To this end, we propose Joint Reward Modeling (JRM), which jointly optimizes preference learning and language modeling on a shared vision-language backbone. This approach internalizes the semantic and reasoning capabilities of generative models into efficient discriminative representations, enabling fast and accurate evaluation. JRM achieves state-of-the-art results on MMRB2 and EditReward-Bench, and significantly improves stability and performance in downstream online reinforcement learning. These results show that joint training effectively bridges efficiency and semantic understanding in reward modeling.
Abstract:Online Reinforcement Learning (RL) offers a promising avenue for complex image editing but is currently constrained by the scarcity of reliable and fine-grained reward signals. Existing evaluators frequently struggle with a critical perception gap we term "Attention Collapse," where models neglect cross-image comparisons and fail to capture fine-grained details, resulting in inaccurate perception and miscalibrated scores. To address these limitations, we propose SpatialReward, a reward model that enforces precise verification via explicit spatial reasoning. By anchoring reasoning to predicted edit regions, SpatialReward grounds semantic judgments in pixel-level evidence, significantly enhancing evaluative accuracy. Trained on a curated 260k spatial-aware dataset, our model achieves state-of-the-art performance on MMRB2 and EditReward-Bench, and outperforms proprietary evaluators on our proposed MultiEditReward-Bench. Furthermore, SpatialReward serves as a robust signal in online RL, boosting OmniGen2 by +0.90 on GEdit-Bench--surpassing the leading discriminative model and doubling the gain of GPT-4.1 (+0.45). These results demonstrate that spatial reasoning is essential for unlocking effective alignment in image editing.
Abstract:In the wave of generative recommendation, we present OneMall, an end-to-end generative recommendation framework tailored for e-commerce services at Kuaishou. Our OneMall systematically unifies the e-commerce's multiple item distribution scenarios, such as Product-card, short-video and live-streaming. Specifically, it comprises three key components, aligning the entire model training pipeline to the LLM's pre-training/post-training: (1) E-commerce Semantic Tokenizer: we provide a tokenizer solution that captures both real-world semantics and business-specific item relations across different scenarios; (2) Transformer-based Architecture: we largely utilize Transformer as our model backbone, e.g., employing Query-Former for long sequence compression, Cross-Attention for multi-behavior sequence fusion, and Sparse MoE for scalable auto-regressive generation; (3) Reinforcement Learning Pipeline: we further connect retrieval and ranking models via RL, enabling the ranking model to serve as a reward signal for end-to-end policy retrieval model optimization. Extensive experiments demonstrate that OneMall achieves consistent improvements across all e-commerce scenarios: +13.01\% GMV in product-card, +15.32\% Orders in Short-Video, and +2.78\% Orders in Live-Streaming. OneMall has been deployed, serving over 400 million daily active users at Kuaishou.
Abstract:In the wave of generative recommendation, we present OneMall, an end-to-end generative recommendation framework tailored for e-commerce services at Kuaishou. Our OneMall systematically unifies the e-commerce's multiple item distribution scenarios, such as Product-card, short-video and live-streaming. Specifically, it comprises three key components, aligning the entire model training pipeline to the LLM's pre-training/post-training: (1) E-commerce Semantic Tokenizer: we provide a tokenizer solution that captures both real-world semantics and business-specific item relations across different scenarios; (2) Transformer-based Architecture: we largely utilize Transformer as our model backbone, e.g., employing Query-Former for long sequence compression, Cross-Attention for multi-behavior sequence fusion, and Sparse MoE for scalable auto-regressive generation; (3) Reinforcement Learning Pipeline: we further connect retrieval and ranking models via RL, enabling the ranking model to serve as a reward signal for end-to-end policy retrieval model optimization. Extensive experiments demonstrate that OneMall achieves consistent improvements across all e-commerce scenarios: +13.01\% GMV in product-card, +15.32\% Orders in Short-Video, and +2.78\% Orders in Live-Streaming. OneMall has been deployed, serving over 400 million daily active users at Kuaishou.
Abstract:Infographics are composite visual artifacts that combine data visualizations with textual and illustrative elements to communicate information. While recent text-to-image (T2I) models can generate aesthetically appealing images, their reliability in generating infographics remains unclear. Generated infographics may appear correct at first glance but contain easily overlooked issues, such as distorted data encoding or incorrect textual content. We present IGENBENCH, the first benchmark for evaluating the reliability of text-to-infographic generation, comprising 600 curated test cases spanning 30 infographic types. We design an automated evaluation framework that decomposes reliability verification into atomic yes/no questions based on a taxonomy of 10 question types. We employ multimodal large language models (MLLMs) to verify each question, yielding question-level accuracy (Q-ACC) and infographic-level accuracy (I-ACC). We comprehensively evaluate 10 state-of-the-art T2I models on IGENBENCH. Our systematic analysis reveals key insights for future model development: (i) a three-tier performance hierarchy with the top model achieving Q-ACC of 0.90 but I-ACC of only 0.49; (ii) data-related dimensions emerging as universal bottlenecks (e.g., Data Completeness: 0.21); and (iii) the challenge of achieving end-to-end correctness across all models. We release IGENBENCH at https://igen-bench.vercel.app/.