Alert button
Picture for Wei Chen

Wei Chen

Alert button

Local-Global History-aware Contrastive Learning for Temporal Knowledge Graph Reasoning

Dec 04, 2023
Wei Chen, Huaiyu Wan, Yuting Wu, Shuyuan Zhao, Jiayaqi Cheng, Yuxin Li, Youfang Lin

Temporal knowledge graphs (TKGs) have been identified as a promising approach to represent the dynamics of facts along the timeline. The extrapolation of TKG is to predict unknowable facts happening in the future, holding significant practical value across diverse fields. Most extrapolation studies in TKGs focus on modeling global historical fact repeating and cyclic patterns, as well as local historical adjacent fact evolution patterns, showing promising performance in predicting future unknown facts. Yet, existing methods still face two major challenges: (1) They usually neglect the importance of historical information in KG snapshots related to the queries when encoding the local and global historical information; (2) They exhibit weak anti-noise capabilities, which hinders their performance when the inputs are contaminated with noise.To this end, we propose a novel \blue{Lo}cal-\blue{g}lobal history-aware \blue{C}ontrastive \blue{L}earning model (\blue{LogCL}) for TKG reasoning, which adopts contrastive learning to better guide the fusion of local and global historical information and enhance the ability to resist interference. Specifically, for the first challenge, LogCL proposes an entity-aware attention mechanism applied to the local and global historical facts encoder, which captures the key historical information related to queries. For the latter issue, LogCL designs four historical query contrast patterns, effectively improving the robustness of the model. The experimental results on four benchmark datasets demonstrate that LogCL delivers better and more robust performance than the state-of-the-art baselines.

* 14 pages, Accept ICDE2024 
Viaarxiv icon

Statistical Parameterized Physics-Based Machine Learning Digital Twin Models for Laser Powder Bed Fusion Process

Nov 14, 2023
Yangfan Li, Satyajit Mojumder, Ye Lu, Abdullah Al Amin, Jiachen Guo, Xiaoyu Xie, Wei Chen, Gregory J. Wagner, Jian Cao, Wing Kam Liu

A digital twin (DT) is a virtual representation of physical process, products and/or systems that requires a high-fidelity computational model for continuous update through the integration of sensor data and user input. In the context of laser powder bed fusion (LPBF) additive manufacturing, a digital twin of the manufacturing process can offer predictions for the produced parts, diagnostics for manufacturing defects, as well as control capabilities. This paper introduces a parameterized physics-based digital twin (PPB-DT) for the statistical predictions of LPBF metal additive manufacturing process. We accomplish this by creating a high-fidelity computational model that accurately represents the melt pool phenomena and subsequently calibrating and validating it through controlled experiments. In PPB-DT, a mechanistic reduced-order method-driven stochastic calibration process is introduced, which enables the statistical predictions of the melt pool geometries and the identification of defects such as lack-of-fusion porosity and surface roughness, specifically for diagnostic applications. Leveraging data derived from this physics-based model and experiments, we have trained a machine learning-based digital twin (PPB-ML-DT) model for predicting, monitoring, and controlling melt pool geometries. These proposed digital twin models can be employed for predictions, control, optimization, and quality assurance within the LPBF process, ultimately expediting product development and certification in LPBF-based metal additive manufacturing.

* arXiv admin note: text overlap with arXiv:2208.02907 
Viaarxiv icon

Deep Joint Source Channel Coding With Attention Modules Over MIMO Channels

Nov 13, 2023
Weiran Jiang, Wei Chen, Bo Ai

In this paper, we propose two deep joint source and channel coding (DJSCC) structures with attention modules for the multi-input multi-output (MIMO) channel, including a serial structure and a parallel structure. With singular value decomposition (SVD)-based precoding scheme, the MIMO channel can be decomposed into various sub-channels, and the feature outputs will experience sub-channels with different channel qualities. In the serial structure, one single network is used at both the transmitter and the receiver to jointly process data streams of all MIMO subchannels, while data steams of different MIMO subchannels are processed independently via multiple sub-networks in the parallel structure. The attention modules in both serial and parallel architectures enable the system to adapt to varying channel qualities and adjust the quantity of information outputs in accordance with the channel qualities. Experimental results demonstrate the proposed DJSCC structures have improved image transmission performance, and reveal the phenomenon via non-parameter entropy estimation that the learned DJSCC transceivers tend to transmit more information over better sub-channels.

Viaarxiv icon

CAME: Competitively Learning a Mixture-of-Experts Model for First-stage Retrieval

Nov 06, 2023
Yinqiong Cai, Yixing Fan, Keping Bi, Jiafeng Guo, Wei Chen, Ruqing Zhang, Xueqi Cheng

The first-stage retrieval aims to retrieve a subset of candidate documents from a huge collection both effectively and efficiently. Since various matching patterns can exist between queries and relevant documents, previous work tries to combine multiple retrieval models to find as many relevant results as possible. The constructed ensembles, whether learned independently or jointly, do not care which component model is more suitable to an instance during training. Thus, they cannot fully exploit the capabilities of different types of retrieval models in identifying diverse relevance patterns. Motivated by this observation, in this paper, we propose a Mixture-of-Experts (MoE) model consisting of representative matching experts and a novel competitive learning mechanism to let the experts develop and enhance their expertise during training. Specifically, our MoE model shares the bottom layers to learn common semantic representations and uses differently structured upper layers to represent various types of retrieval experts. Our competitive learning mechanism has two stages: (1) a standardized learning stage to train the experts equally to develop their capabilities to conduct relevance matching; (2) a specialized learning stage where the experts compete with each other on every training instance and get rewards and updates according to their performance to enhance their expertise on certain types of samples. Experimental results on three retrieval benchmark datasets show that our method significantly outperforms the state-of-the-art baselines.

Viaarxiv icon

Closing the Gap Between the Upper Bound and the Lower Bound of Adam's Iteration Complexity

Oct 27, 2023
Bohan Wang, Jingwen Fu, Huishuai Zhang, Nanning Zheng, Wei Chen

Figure 1 for Closing the Gap Between the Upper Bound and the Lower Bound of Adam's Iteration Complexity

Recently, Arjevani et al. [1] established a lower bound of iteration complexity for the first-order optimization under an $L$-smooth condition and a bounded noise variance assumption. However, a thorough review of existing literature on Adam's convergence reveals a noticeable gap: none of them meet the above lower bound. In this paper, we close the gap by deriving a new convergence guarantee of Adam, with only an $L$-smooth condition and a bounded noise variance assumption. Our results remain valid across a broad spectrum of hyperparameters. Especially with properly chosen hyperparameters, we derive an upper bound of the iteration complexity of Adam and show that it meets the lower bound for first-order optimizers. To the best of our knowledge, this is the first to establish such a tight upper bound for Adam's convergence. Our proof utilizes novel techniques to handle the entanglement between momentum and adaptive learning rate and to convert the first-order term in the Descent Lemma to the gradient norm, which may be of independent interest.

* NeurIPS 2023 Accept 
Viaarxiv icon

DISC-FinLLM: A Chinese Financial Large Language Model based on Multiple Experts Fine-tuning

Oct 25, 2023
Wei Chen, Qiushi Wang, Zefei Long, Xianyin Zhang, Zhongtian Lu, Bingxuan Li, Siyuan Wang, Jiarong Xu, Xiang Bai, Xuanjing Huang, Zhongyu Wei

Figure 1 for DISC-FinLLM: A Chinese Financial Large Language Model based on Multiple Experts Fine-tuning
Figure 2 for DISC-FinLLM: A Chinese Financial Large Language Model based on Multiple Experts Fine-tuning
Figure 3 for DISC-FinLLM: A Chinese Financial Large Language Model based on Multiple Experts Fine-tuning
Figure 4 for DISC-FinLLM: A Chinese Financial Large Language Model based on Multiple Experts Fine-tuning

We propose Multiple Experts Fine-tuning Framework to build a financial large language model (LLM), DISC-FinLLM. Our methodology improves general LLMs by endowing them with multi-turn question answering abilities, domain text processing capabilities, mathematical computation skills, and retrieval-enhanced generation capabilities. We build a financial instruction-tuning dataset named DISC-FIN-SFT, including instruction samples of four categories (consulting, NLP tasks, computing and retrieval-augmented generation). Evaluations conducted on multiple benchmarks demonstrate that our model performs better than baseline models in various financial scenarios. Further resources can be found at

* 18 pages, 13 figures, 7 tables 
Viaarxiv icon

Mixed-Variable Global Sensitivity Analysis For Knowledge Discovery And Efficient Combinatorial Materials Design

Oct 23, 2023
Yigitcan Comlek, Liwei Wang, Wei Chen

Global Sensitivity Analysis (GSA) is the study of the influence of any given inputs on the outputs of a model. In the context of engineering design, GSA has been widely used to understand both individual and collective contributions of design variables on the design objectives. So far, global sensitivity studies have often been limited to design spaces with only quantitative (numerical) design variables. However, many engineering systems also contain, if not only, qualitative (categorical) design variables in addition to quantitative design variables. In this paper, we integrate Latent Variable Gaussian Process (LVGP) with Sobol' analysis to develop the first metamodel-based mixed-variable GSA method. Through numerical case studies, we validate and demonstrate the effectiveness of our proposed method for mixed-variable problems. Furthermore, while the proposed GSA method is general enough to benefit various engineering design applications, we integrate it with multi-objective Bayesian optimization (BO) to create a sensitivity-aware design framework in accelerating the Pareto front design exploration for metal-organic framework (MOF) materials with many-level combinatorial design spaces. Although MOFs are constructed only from qualitative variables that are notoriously difficult to design, our method can utilize sensitivity analysis to navigate the optimization in the many-level large combinatorial design space, greatly expediting the exploration of novel MOF candidates.

* 35 Pages, 10 Figures, 2 Tables 
Viaarxiv icon

When Urban Region Profiling Meets Large Language Models

Oct 22, 2023
Yibo Yan, Haomin Wen, Siru Zhong, Wei Chen, Haodong Chen, Qingsong Wen, Roger Zimmermann, Yuxuan Liang

Urban region profiling from web-sourced data is of utmost importance for urban planning and sustainable development. We are witnessing a rising trend of LLMs for various fields, especially dealing with multi-modal data research such as vision-language learning, where the text modality serves as a supplement information for the image. Since textual modality has never been introduced into modality combinations in urban region profiling, we aim to answer two fundamental questions in this paper: i) Can textual modality enhance urban region profiling? ii) and if so, in what ways and with regard to which aspects? To answer the questions, we leverage the power of Large Language Models (LLMs) and introduce the first-ever LLM-enhanced framework that integrates the knowledge of textual modality into urban imagery profiling, named LLM-enhanced Urban Region Profiling with Contrastive Language-Image Pretraining (UrbanCLIP). Specifically, it first generates a detailed textual description for each satellite image by an open-source Image-to-Text LLM. Then, the model is trained on the image-text pairs, seamlessly unifying natural language supervision for urban visual representation learning, jointly with contrastive loss and language modeling loss. Results on predicting three urban indicators in four major Chinese metropolises demonstrate its superior performance, with an average improvement of 6.1% on R^2 compared to the state-of-the-art methods. Our code and the image-language dataset will be released upon paper notification.

Viaarxiv icon

Towards Enhancing Relational Rules for Knowledge Graph Link Prediction

Oct 20, 2023
Shuhan Wu, Huaiyu Wan, Wei Chen, Yuting Wu, Junfeng Shen, Youfang Lin

Graph neural networks (GNNs) have shown promising performance for knowledge graph reasoning. A recent variant of GNN called progressive relational graph neural network (PRGNN), utilizes relational rules to infer missing knowledge in relational digraphs and achieves notable results. However, during reasoning with PRGNN, two important properties are often overlooked: (1) the sequentiality of relation composition, where the order of combining different relations affects the semantics of the relational rules, and (2) the lagged entity information propagation, where the transmission speed of required information lags behind the appearance speed of new entities. Ignoring these properties leads to incorrect relational rule learning and decreased reasoning accuracy. To address these issues, we propose a novel knowledge graph reasoning approach, the Relational rUle eNhanced Graph Neural Network (RUN-GNN). Specifically, RUN-GNN employs a query related fusion gate unit to model the sequentiality of relation composition and utilizes a buffering update mechanism to alleviate the negative effect of lagged entity information propagation, resulting in higher-quality relational rule learning. Experimental results on multiple datasets demonstrate the superiority of RUN-GNN is superior on both transductive and inductive link prediction tasks.

* Accepted at Findings of EMNLP2023 
Viaarxiv icon

Over-the-Air Federated Learning and Optimization

Oct 16, 2023
Jingyang Zhu, Yuanming Shi, Yong Zhou, Chunxiao Jiang, Wei Chen, Khaled B. Letaief

Federated learning (FL), as an emerging distributed machine learning paradigm, allows a mass of edge devices to collaboratively train a global model while preserving privacy. In this tutorial, we focus on FL via over-the-air computation (AirComp), which is proposed to reduce the communication overhead for FL over wireless networks at the cost of compromising in the learning performance due to model aggregation error arising from channel fading and noise. We first provide a comprehensive study on the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both strongly convex and non-convex settings with constant and diminishing learning rates in the presence of data heterogeneity. Through convergence and asymptotic analysis, we characterize the impact of aggregation error on the convergence bound and provide insights for system design with convergence guarantees. Then we derive convergence rates for AirFedAvg algorithms for strongly convex and non-convex objectives. For different types of local updates that can be transmitted by edge devices (i.e., local model, gradient, and model difference), we reveal that transmitting local model in AirFedAvg may cause divergence in the training procedure. In addition, we consider more practical signal processing schemes to improve the communication efficiency and further extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes. Extensive simulation results under different settings of objective functions, transmitted local information, and communication schemes verify the theoretical conclusions.

* 31 pages, 11 figures 
Viaarxiv icon