Jeff
Abstract:This paper introduces HiFloat4 (HiF4), a block floating-point data format tailored for deep learning. Each HiF4 unit packs 64 4-bit elements with 32 bits of shared scaling metadata, averaging 4.5 bits per value. The metadata specifies a three-level scaling hierarchy, capturing inter- and intra-group dynamic range while improving the utilization of the representational space. In addition, the large 64-element group size enables matrix multiplications to be executed in a highly fixed-point manner, significantly reducing hardware area and power consumption. To evaluate the proposed format, we conducted inference experiments on several language models, including LLaMA, Qwen, Mistral, DeepSeek-V3.1 and LongCat. Results show that HiF4 achieves higher average accuracy than the state-of-the-art NVFP4 format across multiple models and diverse downstream tasks.
Abstract:As LLMs scale, low-bit floating-point formats like MXFP and NVFP4 offer new opportunities for precision and efficiency. In this work, we evaluate HiFloat (HiF8 and HiF4), a family of formats tailored for Ascend NPUs. Through rigorous comparison across weight-activation and KV-cache tasks, we provide three key insights: (1) INT8 suits narrow-range data, while floating-point formats excel with high-variance data; (2) in 4-bit regimes, HiF4's hierarchical scaling prevents the accuracy collapse seen in integer formats; and (3) HiFloat is fully compatible with state-of-the-art post-training quantization frameworks. Overall, HiFloat provides a solution for high-efficiency LLM inference on NPUs.
Abstract:The digital industry demands high-quality, diverse modular 3D assets, especially for user-generated content~(UGC). In this work, we introduce AssetFormer, an autoregressive Transformer-based model designed to generate modular 3D assets from textual descriptions. Our pilot study leverages real-world modular assets collected from online platforms. AssetFormer tackles the challenge of creating assets composed of primitives that adhere to constrained design parameters for various applications. By innovatively adapting module sequencing and decoding techniques inspired by language models, our approach enhances asset generation quality through autoregressive modeling. Initial results indicate the effectiveness of AssetFormer in streamlining asset creation for professional development and UGC scenarios. This work presents a flexible framework extendable to various types of modular 3D assets, contributing to the broader field of 3D content generation. The code is available at https://github.com/Advocate99/AssetFormer.
Abstract:Deploying Vision-Language Models (VLMs) on edge devices is challenged by resource constraints and performance degradation under distribution shifts. While test-time adaptation (TTA) can counteract such shifts, existing methods are too resource-intensive for on-device deployment. To address this challenge, we propose LQA, a lightweight, quantized-adaptive framework for VLMs that combines a modality-aware quantization strategy with gradient-free test-time adaptation. We introduce Selective Hybrid Quantization (SHQ) and a quantized, gradient-free adaptation mechanism to enable robust and efficient VLM deployment on resource-constrained hardware. Experiments across both synthetic and real-world distribution shifts show that LQA improves overall adaptation performance by 4.5\%, uses less memory than full-precision models, and significantly outperforms gradient-based TTA methods, achieving up to 19.9$\times$ lower memory usage across seven open-source datasets. These results demonstrate that LQA offers a practical pathway for robust, privacy-preserving, and efficient VLM deployment on edge devices.
Abstract:In this report, we introduce ERNIE 5.0, a natively autoregressive foundation model desinged for unified multimodal understanding and generation across text, image, video, and audio. All modalities are trained from scratch under a unified next-group-of-tokens prediction objective, based on an ultra-sparse mixture-of-experts (MoE) architecture with modality-agnostic expert routing. To address practical challenges in large-scale deployment under diverse resource constraints, ERNIE 5.0 adopts a novel elastic training paradigm. Within a single pre-training run, the model learns a family of sub-models with varying depths, expert capacities, and routing sparsity, enabling flexible trade-offs among performance, model size, and inference latency in memory- or time-constrained scenarios. Moreover, we systematically address the challenges of scaling reinforcement learning to unified foundation models, thereby guaranteeing efficient and stable post-training under ultra-sparse MoE architectures and diverse multimodal settings. Extensive experiments demonstrate that ERNIE 5.0 achieves strong and balanced performance across multiple modalities. To the best of our knowledge, among publicly disclosed models, ERNIE 5.0 represents the first production-scale realization of a trillion-parameter unified autoregressive model that supports both multimodal understanding and generation. To facilitate further research, we present detailed visualizations of modality-agnostic expert routing in the unified model, alongside comprehensive empirical analysis of elastic training, aiming to offer profound insights to the community.
Abstract:Multivariate time series underpin modern critical infrastructure, making the prediction of anomalies a vital necessity for proactive risk mitigation. While Joint-Embedding Predictive Architectures (JEPA) offer a promising framework for modeling the latent evolution of these systems, their application is hindered by representation collapse and an inability to capture precursor signals across varying temporal scales. To address these limitations, we propose MTS-JEPA, a specialized architecture that integrates a multi-resolution predictive objective with a soft codebook bottleneck. This design explicitly decouples transient shocks from long-term trends, and utilizes the codebook to capture discrete regime transitions. Notably, we find this constraint also acts as an intrinsic regularizer to ensure optimization stability. Empirical evaluations on standard benchmarks confirm that our approach effectively prevents degenerate solutions and achieves state-of-the-art performance under the early-warning protocol.
Abstract:Embodied Artificial Intelligence (AI) is an intelligent system formed by agents and their environment through active perception, embodied cognition, and action interaction. Existing embodied AI remains confined to human-crafted setting, in which agents are trained on given memory and construct models for given tasks, enabling fixed embodiments to interact with relatively static environments. Such methods fail in in-the-wild setting characterized by variable embodiments and dynamic open environments. This paper introduces self-evolving embodied AI, a new paradigm in which agents operate based on their changing state and environment with memory self-updating, task self-switching, environment self-prediction, embodiment self-adaptation, and model self-evolution, aiming to achieve continually adaptive intelligence with autonomous evolution. Specifically, we present the definition, framework, components, and mechanisms of self-evolving embodied AI, systematically review state-of-the-art works for realized components, discuss practical applications, and point out future research directions. We believe that self-evolving embodied AI enables agents to autonomously learn and interact with environments in a human-like manner and provide a new perspective toward general artificial intelligence.
Abstract:Multi-agent debate can improve reasoning quality and reduce hallucinations, but it incurs rapidly growing context as debate rounds and agent count increase. Retaining full textual histories leads to token usage that can exceed context limits and often requires repeated summarization, adding overhead and compounding information loss. We introduce DebateOCR, a cross-modal compression framework that replaces long textual debate traces with compact image representations, which are then consumed through a dedicated vision encoder to condition subsequent rounds. This design compresses histories that commonly span tens to hundreds of thousands of tokens, cutting input tokens by more than 92% and yielding substantially lower compute cost and faster inference across multiple benchmarks. We further provide a theoretical perspective showing that diversity across agents supports recovery of omitted information: although any single compressed history may discard details, aggregating multiple agents' compressed views allows the collective representation to approach the information bottleneck with exponentially high probability.
Abstract:Audio watermarking embeds auxiliary information into speech while maintaining speaker identity, linguistic content, and perceptual quality. Although recent advances in neural and digital signal processing-based watermarking methods have improved imperceptibility and embedding capacity, robustness is still primarily assessed against conventional distortions such as compression, additive noise, and resampling. However, the rise of deep learning-based attacks introduces novel and significant threats to watermark security. In this work, we investigate self voice conversion as a universal, content-preserving attack against audio watermarking systems. Self voice conversion remaps a speaker's voice to the same identity while altering acoustic characteristics through a voice conversion model. We demonstrate that this attack severely degrades the reliability of state-of-the-art watermarking approaches and highlight its implications for the security of modern audio watermarking techniques.
Abstract:Graphs are a fundamental data structure for representing relational information in domains such as social networks, molecular systems, and knowledge graphs. However, graph learning models often suffer from limited generalization when applied beyond their training distributions. In practice, distribution shifts may arise from changes in graph structure, domain semantics, available modalities, or task formulations. To address these challenges, graph foundation models (GFMs) have recently emerged, aiming to learn general-purpose representations through large-scale pretraining across diverse graphs and tasks. In this survey, we review recent progress on GFMs from the perspective of out-of-distribution (OOD) generalization. We first discuss the main challenges posed by distribution shifts in graph learning and outline a unified problem setting. We then organize existing approaches based on whether they are designed to operate under a fixed task specification or to support generalization across heterogeneous task formulations, and summarize the corresponding OOD handling strategies and pretraining objectives. Finally, we review common evaluation protocols and discuss open directions for future research. To the best of our knowledge, this paper is the first survey for OOD generalization in GFMs.