National Institute of Informatics, Japan
Abstract:Federated semantic segmentation enables pixel-level classification in images through collaborative learning while maintaining data privacy. However, existing research commonly overlooks the fine-grained class relationships within the semantic space when addressing heterogeneous problems, particularly domain shift. This oversight results in ambiguities between class representation. To overcome this challenge, we propose a novel federated segmentation framework that strikes class consistency, termed FedSaaS. Specifically, we introduce class exemplars as a criterion for both local- and global-level class representations. On the server side, the uploaded class exemplars are leveraged to model class prototypes, which supervise global branch of clients, ensuring alignment with global-level representation. On the client side, we incorporate an adversarial mechanism to harmonize contributions of global and local branches, leading to consistent output. Moreover, multilevel contrastive losses are employed on both sides to enforce consistency between two-level representations in the same semantic space. Extensive experiments on several driving scene segmentation datasets demonstrate that our framework outperforms state-of-the-art methods, significantly improving average segmentation accuracy and effectively addressing the class-consistency representation problem.
Abstract:Deformable registration is a fundamental task in medical image processing, aiming to achieve precise alignment by establishing nonlinear correspondences between images. Traditional methods offer good adaptability and interpretability but are limited by computational efficiency. Although deep learning approaches have significantly improved registration speed and accuracy, they often lack flexibility and generalizability across different datasets and tasks. In recent years, foundation models have emerged as a promising direction, leveraging large and diverse datasets to learn universal features and transformation patterns for image registration, thus demonstrating strong cross-task transferability. However, these models still face challenges in generalization and robustness when encountering novel anatomical structures, varying imaging conditions, or unseen modalities. To address these limitations, this paper incorporates Sharpness-Aware Minimization (SAM) into foundation models to enhance their generalization and robustness in medical image registration. By optimizing the flatness of the loss landscape, SAM improves model stability across diverse data distributions and strengthens its ability to handle complex clinical scenarios. Experimental results show that foundation models integrated with SAM achieve significant improvements in cross-dataset registration performance, offering new insights for the advancement of medical image registration technology. Our code is available at https://github.com/Promise13/fm_sam}{https://github.com/Promise13/fm\_sam.
Abstract:Most existing decentralized learning methods with differential privacy (DP) guarantee rely on constant gradient clipping bounds and fixed-level DP Gaussian noises for each node throughout the training process, leading to a significant accuracy degradation compared to non-private counterparts. In this paper, we propose a new Dynamic Differentially Private Decentralized learning approach (termed Dyn-D$^2$P) tailored for general time-varying directed networks. Leveraging the Gaussian DP (GDP) framework for privacy accounting, Dyn-D$^2$P dynamically adjusts gradient clipping bounds and noise levels based on gradient convergence. This proposed dynamic noise strategy enables us to enhance model accuracy while preserving the total privacy budget. Extensive experiments on benchmark datasets demonstrate the superiority of Dyn-D$^2$P over its counterparts employing fixed-level noises, especially under strong privacy guarantees. Furthermore, we provide a provable utility bound for Dyn-D$^2$P that establishes an explicit dependency on network-related parameters, with a scaling factor of $1/\sqrt{n}$ in terms of the number of nodes $n$ up to a bias error term induced by gradient clipping. To our knowledge, this is the first model utility analysis for differentially private decentralized non-convex optimization with dynamic gradient clipping bounds and noise levels.
Abstract:Large Language Models (LLMs) have shown remarkable ability in solving complex tasks, making them a promising tool for enhancing tabular learning. However, existing LLM-based methods suffer from high resource requirements, suboptimal demonstration selection, and limited interpretability, which largely hinder their prediction performance and application in the real world. To overcome these problems, we propose a novel in-context learning framework for tabular prediction. The core idea is to leverage the explanations generated by LLMs to guide a smaller, locally deployable Surrogate Language Model (SLM) to make interpretable tabular predictions. Specifically, our framework mainly involves three stages: (i) Post Hoc Explanation Generation, where LLMs are utilized to generate explanations for question-answer pairs in candidate demonstrations, providing insights into the reasoning behind the answer. (ii) Post Hoc Explanation-Guided Demonstrations Selection, which utilizes explanations generated by LLMs to guide the process of demonstration selection from candidate demonstrations. (iii) Post Hoc Explanation-Guided Interpretable SLM Prediction, which utilizes the demonstrations obtained in step (ii) as in-context and merges corresponding explanations as rationales to improve the performance of SLM and guide the model to generate interpretable outputs. Experimental results highlight the framework's effectiveness, with an average accuracy improvement of 5.31% across various tabular datasets in diverse domains.
Abstract:Few-shot tabular learning, in which machine learning models are trained with a limited amount of labeled data, provides a cost-effective approach to addressing real-world challenges. The advent of Large Language Models (LLMs) has sparked interest in leveraging their pre-trained knowledge for few-shot tabular learning. Despite promising results, existing approaches either rely on test-time knowledge extraction, which introduces undesirable latency, or text-level knowledge, which leads to unreliable feature engineering. To overcome these limitations, we propose Latte, a training-time knowledge extraction framework that transfers the latent prior knowledge within LLMs to optimize a more generalized downstream model. Latte enables general knowledge-guided downstream tabular learning, facilitating the weighted fusion of information across different feature values while reducing the risk of overfitting to limited labeled data. Furthermore, Latte is compatible with existing unsupervised pre-training paradigms and effectively utilizes available unlabeled samples to overcome the performance limitations imposed by an extremely small labeled dataset. Extensive experiments on various few-shot tabular learning benchmarks demonstrate the superior performance of Latte, establishing it as a state-of-the-art approach in this domain
Abstract:Arbitrary style transfer aims to apply the style of any given artistic image to another content image. Still, existing deep learning-based methods often require significant computational costs to generate diverse stylized results. Motivated by this, we propose a novel reinforcement learning-based framework for arbitrary style transfer RLMiniStyler. This framework leverages a unified reinforcement learning policy to iteratively guide the style transfer process by exploring and exploiting stylization feedback, generating smooth sequences of stylized results while achieving model lightweight. Furthermore, we introduce an uncertainty-aware multi-task learning strategy that automatically adjusts loss weights to adapt to the content and style balance requirements at different training stages, thereby accelerating model convergence. Through a series of experiments across image various resolutions, we have validated the advantages of RLMiniStyler over other state-of-the-art methods in generating high-quality, diverse artistic image sequences at a lower cost. Codes are available at https://github.com/fengxiaoming520/RLMiniStyler.
Abstract:The advent of Vision-Language Models (VLMs) in medical image analysis has the potential to help process multimodal inputs and increase performance over traditional inference methods. However, when considering the domain in which these models will be implemented, fairness and robustness are important to ensure the model stays true for any patient. In this paper, we introduce a framework for ensuring robustness and fairness of VLM models. This framework modifies the loss function at training by identifying and adjusting faulty image-text pairs through a Dynamic Bad Pair Mining algorithm and also utilizing Sinkhorn distance to ensure the loss distributions of protected groups do not deviate from the total loss. Experimental testing of our framework shows up to a 8.6\% improvement when looking at equity-scaled AUC.
Abstract:Deepfakes, created using advanced AI techniques such as Variational Autoencoder and Generative Adversarial Networks, have evolved from research and entertainment applications into tools for malicious activities, posing significant threats to digital trust. Current deepfake detection techniques have evolved from CNN-based methods focused on local artifacts to more advanced approaches using vision transformers and multimodal models like CLIP, which capture global anomalies and improve cross-domain generalization. Despite recent progress, state-of-the-art deepfake detectors still face major challenges in handling distribution shifts from emerging generative models and addressing severe class imbalance between authentic and fake samples in deepfake datasets, which limits their robustness and detection accuracy. To address these challenges, we propose a framework that combines dynamic loss reweighting and ranking-based optimization, which achieves superior generalization and performance under imbalanced dataset conditions. The code is available at https://github.com/Purdue-M2/SP_CUP.
Abstract:Stress haunts people in modern society, which may cause severe health issues if left unattended. With social media becoming an integral part of daily life, leveraging social media to detect stress has gained increasing attention. While the majority of the work focuses on classifying stress states and stress categories, this study introduce a new task aimed at estimating more specific stressors (like exam, writing paper, etc.) through users' posts on social media. Unfortunately, the diversity of stressors with many different classes but a few examples per class, combined with the consistent arising of new stressors over time, hinders the machine understanding of stressors. To this end, we cast the stressor estimation problem within a practical scenario few-shot learning setting, and propose a novel meta-learning based stressor estimation framework that is enhanced by a meta-knowledge inheritance mechanism. This model can not only learn generic stressor context through meta-learning, but also has a good generalization ability to estimate new stressors with little labeled data. A fundamental breakthrough in our approach lies in the inclusion of the meta-knowledge inheritance mechanism, which equips our model with the ability to prevent catastrophic forgetting when adapting to new stressors. The experimental results show that our model achieves state-of-the-art performance compared with the baselines. Additionally, we construct a social media-based stressor estimation dataset that can help train artificial intelligence models to facilitate human well-being. The dataset is now public at \href{https://www.kaggle.com/datasets/xinwangcs/stressor-cause-of-mental-health-problem-dataset}{\underline{Kaggle}} and \href{https://huggingface.co/datasets/XinWangcs/Stressor}{\underline{Hugging Face}}.
Abstract:This work presents GarmentX, a novel framework for generating diverse, high-fidelity, and wearable 3D garments from a single input image. Traditional garment reconstruction methods directly predict 2D pattern edges and their connectivity, an overly unconstrained approach that often leads to severe self-intersections and physically implausible garment structures. In contrast, GarmentX introduces a structured and editable parametric representation compatible with GarmentCode, ensuring that the decoded sewing patterns always form valid, simulation-ready 3D garments while allowing for intuitive modifications of garment shape and style. To achieve this, we employ a masked autoregressive model that sequentially predicts garment parameters, leveraging autoregressive modeling for structured generation while mitigating inconsistencies in direct pattern prediction. Additionally, we introduce GarmentX dataset, a large-scale dataset of 378,682 garment parameter-image pairs, constructed through an automatic data generation pipeline that synthesizes diverse and high-quality garment images conditioned on parametric garment representations. Through integrating our method with GarmentX dataset, we achieve state-of-the-art performance in geometric fidelity and input image alignment, significantly outperforming prior approaches. We will release GarmentX dataset upon publication.