Abstract:We present Heartcare Suite, a multimodal comprehensive framework for finegrained electrocardiogram (ECG) understanding. It comprises three key components: (i) Heartcare-220K, a high-quality, structured, and comprehensive multimodal ECG dataset covering essential tasks such as disease diagnosis, waveform morphology analysis, and rhythm interpretation. (ii) Heartcare-Bench, a systematic and multi-dimensional benchmark designed to evaluate diagnostic intelligence and guide the optimization of Medical Multimodal Large Language Models (Med-MLLMs) in ECG scenarios. and (iii) HeartcareGPT with a tailored tokenizer Bidirectional ECG Abstract Tokenization (Beat), which compresses raw multi-lead signals into semantically rich discrete tokens via duallevel vector quantization and query-guided bidirectional diffusion mechanism. Built upon Heartcare-220K, HeartcareGPT achieves strong generalization and SoTA performance across multiple clinically meaningful tasks. Extensive experiments demonstrate that Heartcare Suite is highly effective in advancing ECGspecific multimodal understanding and evaluation. Our project is available at https://github.com/Wznnnnn/Heartcare-Suite .
Abstract:The emergence of multimodal large language models (MLLMs) has driven breakthroughs in egocentric vision applications. These applications necessitate persistent, context-aware understanding of objects, as users interact with tools in dynamic and cluttered environments. However, existing embodied benchmarks primarily focus on static scene exploration, emphasizing object's appearance and spatial attributes while neglecting the assessment of dynamic changes arising from users' interactions. To address this gap, we introduce EOC-Bench, an innovative benchmark designed to systematically evaluate object-centric embodied cognition in dynamic egocentric scenarios. Specially, EOC-Bench features 3,277 meticulously annotated QA pairs categorized into three temporal categories: Past, Present, and Future, covering 11 fine-grained evaluation dimensions and 3 visual object referencing types. To ensure thorough assessment, we develop a mixed-format human-in-the-loop annotation framework with four types of questions and design a novel multi-scale temporal accuracy metric for open-ended temporal evaluation. Based on EOC-Bench, we conduct comprehensive evaluations of various proprietary, open-source, and object-level MLLMs. EOC-Bench serves as a crucial tool for advancing the embodied object cognitive capabilities of MLLMs, establishing a robust foundation for developing reliable core models for embodied systems.
Abstract:This work presents a novel text-to-vector graphics generation approach, Dream3DVG, allowing for arbitrary viewpoint viewing, progressive detail optimization, and view-dependent occlusion awareness. Our approach is a dual-branch optimization framework, consisting of an auxiliary 3D Gaussian Splatting optimization branch and a 3D vector graphics optimization branch. The introduced 3DGS branch can bridge the domain gaps between text prompts and vector graphics with more consistent guidance. Moreover, 3DGS allows for progressive detail control by scheduling classifier-free guidance, facilitating guiding vector graphics with coarse shapes at the initial stages and finer details at later stages. We also improve the view-dependent occlusions by devising a visibility-awareness rendering module. Extensive results on 3D sketches and 3D iconographies, demonstrate the superiority of the method on different abstraction levels of details, cross-view consistency, and occlusion-aware stroke culling.
Abstract:Large reasoning models such as OpenAI o1 and DeepSeek-R1 have achieved remarkable performance in the domain of reasoning. A key component of their training is the incorporation of verifiable rewards within reinforcement learning (RL). However, existing reward benchmarks do not evaluate reference-based reward systems, leaving researchers with limited understanding of the accuracy of verifiers used in RL. In this paper, we introduce two benchmarks, VerifyBench and VerifyBench-Hard, designed to assess the performance of reference-based reward systems. These benchmarks are constructed through meticulous data collection and curation, followed by careful human annotation to ensure high quality. Current models still show considerable room for improvement on both VerifyBench and VerifyBench-Hard, especially smaller-scale models. Furthermore, we conduct a thorough and comprehensive analysis of evaluation results, offering insights for understanding and developing reference-based reward systems. Our proposed benchmarks serve as effective tools for guiding the development of verifier accuracy and the reasoning capabilities of models trained via RL in reasoning tasks.
Abstract:Large language models (LLMs) have achieved remarkable progress on mathematical tasks through Chain-of-Thought (CoT) reasoning. However, existing mathematical CoT datasets often suffer from Thought Leaps due to experts omitting intermediate steps, which negatively impacts model learning and generalization. We propose the CoT Thought Leap Bridge Task, which aims to automatically detect leaps and generate missing intermediate reasoning steps to restore the completeness and coherence of CoT. To facilitate this, we constructed a specialized training dataset called ScaleQM+, based on the structured ScaleQuestMath dataset, and trained CoT-Bridge to bridge thought leaps. Through comprehensive experiments on mathematical reasoning benchmarks, we demonstrate that models fine-tuned on bridged datasets consistently outperform those trained on original datasets, with improvements of up to +5.87% on NuminaMath. Our approach effectively enhances distilled data (+3.02%) and provides better starting points for reinforcement learning (+3.1%), functioning as a plug-and-play module compatible with existing optimization techniques. Furthermore, CoT-Bridge demonstrate improved generalization to out-of-domain logical reasoning tasks, confirming that enhancing reasoning completeness yields broadly applicable benefits.
Abstract:Large reasoning models (LRMs), such as OpenAI o1 and DeepSeek-R1, have significantly enhanced their reasoning capabilities by generating longer chains of thought, demonstrating outstanding performance across a variety of tasks. However, this performance gain comes at the cost of a substantial increase in redundant reasoning during the generation process, leading to high computational overhead and exacerbating the issue of overthinking. Although numerous existing approaches aim to address the problem of overthinking, they often rely on external interventions. In this paper, we propose a novel framework, Self-Braking Tuning (SBT), which tackles overthinking from the perspective of allowing the model to regulate its own reasoning process, thus eliminating the reliance on external control mechanisms. We construct a set of overthinking identification metrics based on standard answers and design a systematic method to detect redundant reasoning. This method accurately identifies unnecessary steps within the reasoning trajectory and generates training signals for learning self-regulation behaviors. Building on this foundation, we develop a complete strategy for constructing data with adaptive reasoning lengths and introduce an innovative braking prompt mechanism that enables the model to naturally learn when to terminate reasoning at an appropriate point. Experiments across mathematical benchmarks (AIME, AMC, MATH500, GSM8K) demonstrate that our method reduces token consumption by up to 60% while maintaining comparable accuracy to unconstrained models.
Abstract:Medical Large Vision-Language Models (Med-LVLMs) demonstrate significant potential in healthcare, but their reliance on general medical data and coarse-grained global visual understanding limits them in intelligent ophthalmic diagnosis. Currently, intelligent ophthalmic diagnosis faces three major challenges: (i) Data. The lack of deeply annotated, high-quality, multi-modal ophthalmic visual instruction data; (ii) Benchmark. The absence of a comprehensive and systematic benchmark for evaluating diagnostic performance; (iii) Model. The difficulty of adapting holistic visual architectures to fine-grained, region-specific ophthalmic lesion identification. In this paper, we propose the Eyecare Kit, which systematically tackles the aforementioned three key challenges with the tailored dataset, benchmark and model: First, we construct a multi-agent data engine with real-life ophthalmology data to produce Eyecare-100K, a high-quality ophthalmic visual instruction dataset. Subsequently, we design Eyecare-Bench, a benchmark that comprehensively evaluates the overall performance of LVLMs on intelligent ophthalmic diagnosis tasks across multiple dimensions. Finally, we develop the EyecareGPT, optimized for fine-grained ophthalmic visual understanding thoroughly, which incorporates an adaptive resolution mechanism and a layer-wise dense connector. Extensive experimental results indicate that the EyecareGPT achieves state-of-the-art performance in a range of ophthalmic tasks, underscoring its significant potential for the advancement of open research in intelligent ophthalmic diagnosis. Our project is available at https://github.com/DCDmllm/EyecareGPT.
Abstract:Visual relation detection (VRD) aims to identify relationships (or interactions) between object pairs in an image. Although recent VRD models have achieved impressive performance, they are all restricted to pre-defined relation categories, while failing to consider the semantic ambiguity characteristic of visual relations. Unlike objects, the appearance of visual relations is always subtle and can be described by multiple predicate words from different perspectives, e.g., ``ride'' can be depicted as ``race'' and ``sit on'', from the sports and spatial position views, respectively. To this end, we propose to model visual relations as continuous embeddings, and design diffusion models to achieve generalized VRD in a conditional generative manner, termed Diff-VRD. We model the diffusion process in a latent space and generate all possible relations in the image as an embedding sequence. During the generation, the visual and text embeddings of subject-object pairs serve as conditional signals and are injected via cross-attention. After the generation, we design a subsequent matching stage to assign the relation words to subject-object pairs by considering their semantic similarities. Benefiting from the diffusion-based generative process, our Diff-VRD is able to generate visual relations beyond the pre-defined category labels of datasets. To properly evaluate this generalized VRD task, we introduce two evaluation metrics, i.e., text-to-image retrieval and SPICE PR Curve inspired by image captioning. Extensive experiments in both human-object interaction (HOI) detection and scene graph generation (SGG) benchmarks attest to the superiority and effectiveness of Diff-VRD.
Abstract:Large Language Models (LLMs) have significantly advanced smart education in the Artificial General Intelligence (AGI) era. A promising application lies in the automatic generalization of instructional design for curriculum and learning activities, focusing on two key aspects: (1) Customized Generation: generating niche-targeted teaching content based on students' varying learning abilities and states, and (2) Intelligent Optimization: iteratively optimizing content based on feedback from learning effectiveness or test scores. Currently, a single large LLM cannot effectively manage the entire process, posing a challenge for designing intelligent teaching plans. To address these issues, we developed EduPlanner, an LLM-based multi-agent system comprising an evaluator agent, an optimizer agent, and a question analyst, working in adversarial collaboration to generate customized and intelligent instructional design for curriculum and learning activities. Taking mathematics lessons as our example, EduPlanner employs a novel Skill-Tree structure to accurately model the background mathematics knowledge of student groups, personalizing instructional design for curriculum and learning activities according to students' knowledge levels and learning abilities. Additionally, we introduce the CIDDP, an LLM-based five-dimensional evaluation module encompassing clarity, Integrity, Depth, Practicality, and Pertinence, to comprehensively assess mathematics lesson plan quality and bootstrap intelligent optimization. Experiments conducted on the GSM8K and Algebra datasets demonstrate that EduPlanner excels in evaluating and optimizing instructional design for curriculum and learning activities. Ablation studies further validate the significance and effectiveness of each component within the framework. Our code is publicly available at https://github.com/Zc0812/Edu_Planner
Abstract:The generation of indoor furniture layouts has significant applications in augmented reality, smart homes, and architectural design. Successful furniture arrangement requires proper physical relationships (e.g., collision avoidance) and spacing relationships between furniture and their functional zones to be respected. However, manually defined relationships are almost always incomplete and can produce unrealistic layouts. This work instead extracts spacing relationships automatically based on a hierarchical analysis and adopts the Delaunay Triangulation to produce important triple relationships. Compared to pairwise relationship modeling, triple relationships account for interactions and space utilization among multiple objects. To this end, we introduce RelTriple, a novel approach that enhances furniture distribution by learning spacing relationships between objects and regions. We formulate triple relationships as object-to-object (O2O) losses and object-to-region (O2R) losses and integrate them directly into the training process of generative diffusion. Our approach consistently improves over existing state-of-the-art methods in visual results evaluation metrics on unconditional layout generation, floorplan-conditioned layout generation, and scene rearrangement, achieving at least 12% on the introduced spatial relationship metric and superior spatial coherence and practical usability.