Abstract:Vision-Language-Action (VLA) models have shown strong potential for general-purpose robotic manipulation, but their reliance on expert demonstrations limits their ability to learn from failures and perform self-corrections. Reinforcement learning (RL) addresses these through self-improving interactions with the physical environment, but suffers from high sample complexity on real robots. We introduce World-Model-based Policy Optimization (WMPO), a principled framework for on-policy VLA RL without interacting with the real environment. In contrast to widely used latent world models, WMPO focuses on pixel-based predictions that align the "imagined" trajectories with the VLA features pretrained with web-scale images. Crucially, WMPO enables the policy to perform on-policy GRPO that provides stronger performance than the often-used off-policy methods. Extensive experiments in both simulation and real-robot settings demonstrate that WMPO (i) substantially improves sample efficiency, (ii) achieves stronger overall performance, (iii) exhibits emergent behaviors such as self-correction, and (iv) demonstrates robust generalization and lifelong learning capabilities.
Abstract:Solving the wave equation is fundamental for geophysical applications. However, numerical solutions of the Helmholtz equation face significant computational and memory challenges. Therefore, we introduce a physics-informed convolutional neural operator (PICNO) to solve the Helmholtz equation efficiently. The PICNO takes both the background wavefield corresponding to a homogeneous medium and the velocity model as input function space, generating the scattered wavefield as the output function space. Our workflow integrates PDE constraints directly into the training process, enabling the neural operator to not only fit the available data but also capture the underlying physics governing wave phenomena. PICNO allows for high-resolution reasonably accurate predictions even with limited training samples, and it demonstrates significant improvements over a purely data-driven convolutional neural operator (CNO), particularly in predicting high-frequency wavefields. These features and improvements are important for waveform inversion down the road.




Abstract:We present \textbf{FlowRL}, a novel framework for online reinforcement learning that integrates flow-based policy representation with Wasserstein-2-regularized optimization. We argue that in addition to training signals, enhancing the expressiveness of the policy class is crucial for the performance gains in RL. Flow-based generative models offer such potential, excelling at capturing complex, multimodal action distributions. However, their direct application in online RL is challenging due to a fundamental objective mismatch: standard flow training optimizes for static data imitation, while RL requires value-based policy optimization through a dynamic buffer, leading to difficult optimization landscapes. FlowRL first models policies via a state-dependent velocity field, generating actions through deterministic ODE integration from noise. We derive a constrained policy search objective that jointly maximizes Q through the flow policy while bounding the Wasserstein-2 distance to a behavior-optimal policy implicitly derived from the replay buffer. This formulation effectively aligns the flow optimization with the RL objective, enabling efficient and value-aware policy learning despite the complexity of the policy class. Empirical evaluations on DMControl and Humanoidbench demonstrate that FlowRL achieves competitive performance in online reinforcement learning benchmarks.




Abstract:Test-time scaling offers a promising way to improve the reasoning performance of vision-language large models (VLLMs) without additional training. In this paper, we explore a simple but effective approach for applying test-time scaling to radiology report generation. Specifically, we introduce a lightweight Thought Graph Traversal (TGT) framework that guides the model to reason through organ-specific findings in a medically coherent order. This framework integrates structured medical priors into the prompt, enabling deeper and more logical analysis with no changes to the underlying model. To further enhance reasoning depth, we apply a reasoning budget forcing strategy that adjusts the model's inference depth at test time by dynamically extending its generation process. This simple yet powerful combination allows a frozen radiology VLLM to self-correct and generate more accurate, consistent chest X-ray reports. Our method outperforms baseline prompting approaches on standard benchmarks, and also reveals dataset biases through traceable reasoning paths. Code and prompts are open-sourced for reproducibility at https://github.com/glerium/Thought-Graph-Traversal.
Abstract:We present Chain-of-Action (CoA), a novel visuo-motor policy paradigm built upon Trajectory Autoregressive Modeling. Unlike conventional approaches that predict next step action(s) forward, CoA generates an entire trajectory by explicit backward reasoning with task-specific goals through an action-level Chain-of-Thought (CoT) process. This process is unified within a single autoregressive structure: (1) the first token corresponds to a stable keyframe action that encodes the task-specific goals; and (2) subsequent action tokens are generated autoregressively, conditioned on the initial keyframe and previously predicted actions. This backward action reasoning enforces a global-to-local structure, allowing each local action to be tightly constrained by the final goal. To further realize the action reasoning structure, CoA incorporates four complementary designs: continuous action token representation; dynamic stopping for variable-length trajectory generation; reverse temporal ensemble; and multi-token prediction to balance action chunk modeling with global structure. As a result, CoA gives strong spatial generalization capabilities while preserving the flexibility and simplicity of a visuo-motor policy. Empirically, we observe CoA achieves the state-of-the-art performance across 60 RLBench tasks and 8 real-world manipulation tasks.
Abstract:Recently, leveraging pre-trained vision-language models (VLMs) for building vision-language-action (VLA) models has emerged as a promising approach to effective robot manipulation learning. However, only few methods incorporate 3D signals into VLMs for action prediction, and they do not fully leverage the spatial structure inherent in 3D data, leading to low sample efficiency. In this paper, we introduce BridgeVLA, a novel 3D VLA model that (1) projects 3D inputs to multiple 2D images, ensuring input alignment with the VLM backbone, and (2) utilizes 2D heatmaps for action prediction, unifying the input and output spaces within a consistent 2D image space. In addition, we propose a scalable pre-training method that equips the VLM backbone with the capability to predict 2D heatmaps before downstream policy learning. Extensive experiments show the proposed method is able to learn 3D manipulation efficiently and effectively. BridgeVLA outperforms state-of-the-art baseline methods across three simulation benchmarks. In RLBench, it improves the average success rate from 81.4% to 88.2%. In COLOSSEUM, it demonstrates significantly better performance in challenging generalization settings, boosting the average success rate from 56.7% to 64.0%. In GemBench, it surpasses all the comparing baseline methods in terms of average success rate. In real-robot experiments, BridgeVLA outperforms a state-of-the-art baseline method by 32% on average. It generalizes robustly in multiple out-of-distribution settings, including visual disturbances and unseen instructions. Remarkably, it is able to achieve a success rate of 96.8% on 10+ tasks with only 3 trajectories per task, highlighting its extraordinary sample efficiency. Project Website:https://bridgevla.github.io/




Abstract:Establishing a reliable and iteratively refined robotic system is essential for deploying real-world applications. While Vision-Language-Action (VLA) models are widely recognized as the foundation model for such robotic deployment, their dependence on expert demonstrations hinders the crucial capabilities of correction and learning from failures. To mitigate this limitation, we introduce a Human-assisted Action Preference Optimization method named HAPO, designed to correct deployment failures and foster effective adaptation through preference alignment for VLA models. This method begins with a human-robot collaboration framework for reliable failure correction and interaction trajectory collection through human intervention. These human-intervention trajectories are further employed within the action preference optimization process, facilitating VLA models to mitigate failure action occurrences while enhancing corrective action adaptation. Specifically, we propose an adaptive reweighting algorithm to address the issues of irreversible interactions and token probability mismatch when introducing preference optimization into VLA models, facilitating model learning from binary desirability signals derived from interactions. Through combining these modules, our human-assisted action preference optimization method ensures reliable deployment and effective learning from failure for VLA models. The experiments conducted in simulation and real-world scenarios prove superior generalization and robustness of our framework across a variety of manipulation tasks.
Abstract:Continual Test-time adaptation (CTTA) continuously adapts the deployed model on every incoming batch of data. While achieving optimal accuracy, existing CTTA approaches present poor real-world applicability on resource-constrained edge devices, due to the substantial memory overhead and energy consumption. In this work, we first introduce a novel paradigm -- on-demand TTA -- which triggers adaptation only when a significant domain shift is detected. Then, we present OD-TTA, an on-demand TTA framework for accurate and efficient adaptation on edge devices. OD-TTA comprises three innovative techniques: 1) a lightweight domain shift detection mechanism to activate TTA only when it is needed, drastically reducing the overall computation overhead, 2) a source domain selection module that chooses an appropriate source model for adaptation, ensuring high and robust accuracy, 3) a decoupled Batch Normalization (BN) update scheme to enable memory-efficient adaptation with small batch sizes. Extensive experiments show that OD-TTA achieves comparable and even better performance while reducing the energy and computation overhead remarkably, making TTA a practical reality.
Abstract:To address the modality learning degeneration caused by modality imbalance, existing multimodal learning~(MML) approaches primarily attempt to balance the optimization process of each modality from the perspective of model learning. However, almost all existing methods ignore the modality imbalance caused by unimodal data sampling, i.e., equal unimodal data sampling often results in discrepancies in informational content, leading to modality imbalance. Therefore, in this paper, we propose a novel MML approach called \underline{D}ata-aware \underline{U}nimodal \underline{S}ampling~(\method), which aims to dynamically alleviate the modality imbalance caused by sampling. Specifically, we first propose a novel cumulative modality discrepancy to monitor the multimodal learning process. Based on the learning status, we propose a heuristic and a reinforcement learning~(RL)-based data-aware unimodal sampling approaches to adaptively determine the quantity of sampled data at each iteration, thus alleviating the modality imbalance from the perspective of sampling. Meanwhile, our method can be seamlessly incorporated into almost all existing multimodal learning approaches as a plugin. Experiments demonstrate that \method~can achieve the best performance by comparing with diverse state-of-the-art~(SOTA) baselines.




Abstract:Orthogonal matching pursuit (OMP) is a commonly used greedy algorithm for recovering sparse signals from compressed measurements. In this paper, we introduce a variant of the OMP algorithm to reduce the complexity of reconstructing a class of $K$-sparse signals $\boldsymbol{x} \in \mathbb{R}^{n}$ from measurements $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}$, where $\boldsymbol{A} \in \{0,1\}^{m \times n}$ is a sparse random combinatorial matrix with $d~(d \leq m/2)$ ones per column. The proposed algorithm, referred to as the confined OMP algorithm, utilizes the properties of $\boldsymbol{x}$ and $\boldsymbol{A}$ to remove much of the redundancy in the dictionary (also referred to as $\boldsymbol{A}$) and thus fewer column indices of $\boldsymbol{A}$ need to be identified. To this end, we first define a confined set $\Gamma$ with $|\Gamma| \leq n$ and then prove that the support of $\boldsymbol{x}$ is a subset of $\Gamma$ with probability 1 if the distributions of non-zero components of $\boldsymbol{x}$ satisfy a certain condition. During the process of the confined OMP algorithm, the possibly chosen column indices are strictly confined into the confined set $\Gamma$. We further develop lower bounds on the probability of exact recovery of $\boldsymbol{x}$ using OMP algorithm and confined OMP algorithm with $K$ iterations, respectively. The obtained theoretical results of confined OMP algorithm can be used to optimize the column degree $d$ of $\boldsymbol{A}$. Finally, experimental results show that the confined OMP algorithm is more efficient in reconstructing a class of sparse signals compared to the OMP algorithm.