Abstract:Large language models (LLMs) have made significant advances in complex reasoning tasks, yet they remain bottlenecked by two core challenges: architectural inefficiency due to reliance on Transformers, and a lack of structured fine-tuning for high-difficulty domains. We introduce \ourmodel, an attention-free language model that addresses both issues through architectural and data-centric innovations. Built on the state space dual (SSD) layers of Mamba-2, our model eliminates the need for self-attention and key-value caching, enabling fixed-memory, constant-time inference. To train it for complex reasoning, we propose a two-phase curriculum fine-tuning strategy based on the \textsc{PromptCoT} synthesis paradigm, which generates pedagogically structured problems via abstract concept selection and rationale-guided generation. On benchmark evaluations, \ourmodel-7B outperforms strong Transformer and hybrid models of comparable scale, and even surpasses the much larger Gemma3-27B by 2.6\% on AIME 24, 0.6\% on AIME 25, and 3.0\% on Livecodebench. These results highlight the potential of state space models as efficient and scalable alternatives to attention-based architectures for high-capacity reasoning.
Abstract:Existing medical RAG systems mainly leverage knowledge from medical knowledge bases, neglecting the crucial role of experiential knowledge derived from similar patient cases -- a key component of human clinical reasoning. To bridge this gap, we propose DoctorRAG, a RAG framework that emulates doctor-like reasoning by integrating both explicit clinical knowledge and implicit case-based experience. DoctorRAG enhances retrieval precision by first allocating conceptual tags for queries and knowledge sources, together with a hybrid retrieval mechanism from both relevant knowledge and patient. In addition, a Med-TextGrad module using multi-agent textual gradients is integrated to ensure that the final output adheres to the retrieved knowledge and patient query. Comprehensive experiments on multilingual, multitask datasets demonstrate that DoctorRAG significantly outperforms strong baseline RAG models and gains improvements from iterative refinements. Our approach generates more accurate, relevant, and comprehensive responses, taking a step towards more doctor-like medical reasoning systems.
Abstract:Large language models (LLMs) have demonstrated significant success in complex reasoning tasks such as math and coding. In contrast to these tasks where deductive reasoning predominates, inductive reasoning\textemdash the ability to derive general rules from incomplete evidence, remains underexplored. This paper investigates extended inductive reasoning in LLMs through the lens of personalized preference inference, a critical challenge in LLM alignment where current approaches struggle to capture diverse user preferences. The task demands strong inductive reasoning capabilities as user preferences are typically embedded implicitly across various interaction forms, requiring models to synthesize consistent preference patterns from scattered signals. We propose \textsc{AlignXplore}, a model that leverages extended reasoning chains to enable systematic preference inference from behavioral signals in users' interaction histories. We develop \textsc{AlignXplore} by combining cold-start training based on synthetic data with subsequent online reinforcement learning. Through extensive experiments, we demonstrate that \textsc{AlignXplore} achieves substantial improvements over the backbone model by an average of 11.05\% on in-domain and out-of-domain benchmarks, while maintaining strong generalization ability across different input formats and downstream models. Further analyses establish best practices for preference inference learning through systematic comparison of reward modeling strategies, while revealing the emergence of human-like inductive reasoning patterns during training.
Abstract:Causal inference has emerged as a promising approach to mitigate long-tail classification by handling the biases introduced by class imbalance. However, along with the change of advanced backbone models from Convolutional Neural Networks (CNNs) to Visual Transformers (ViT), existing causal models may not achieve an expected performance gain. This paper investigates the influence of existing causal models on CNNs and ViT variants, highlighting that ViT's global feature representation makes it hard for causal methods to model associations between fine-grained features and predictions, which leads to difficulties in classifying tail classes with similar visual appearance. To address these issues, this paper proposes TSCNet, a two-stage causal modeling method to discover fine-grained causal associations through multi-scale causal interventions. Specifically, in the hierarchical causal representation learning stage (HCRL), it decouples the background and objects, applying backdoor interventions at both the patch and feature level to prevent model from using class-irrelevant areas to infer labels which enhances fine-grained causal representation. In the counterfactual logits bias calibration stage (CLBC), it refines the optimization of model's decision boundary by adaptive constructing counterfactual balanced data distribution to remove the spurious associations in the logits caused by data distribution. Extensive experiments conducted on various long-tail benchmarks demonstrate that the proposed TSCNet can eliminate multiple biases introduced by data imbalance, which outperforms existing methods.
Abstract:Cross-modal alignment is an effective approach to improving visual classification. Existing studies typically enforce a one-step mapping that uses deep neural networks to project the visual features to mimic the distribution of textual features. However, they typically face difficulties in finding such a projection due to the two modalities in both the distribution of class-wise samples and the range of their feature values. To address this issue, this paper proposes a novel Semantic-Space-Intervened Diffusive Alignment method, termed SeDA, models a semantic space as a bridge in the visual-to-textual projection, considering both types of features share the same class-level information in classification. More importantly, a bi-stage diffusion framework is developed to enable the progressive alignment between the two modalities. Specifically, SeDA first employs a Diffusion-Controlled Semantic Learner to model the semantic features space of visual features by constraining the interactive features of the diffusion model and the category centers of visual features. In the later stage of SeDA, the Diffusion-Controlled Semantic Translator focuses on learning the distribution of textual features from the semantic space. Meanwhile, the Progressive Feature Interaction Network introduces stepwise feature interactions at each alignment step, progressively integrating textual information into mapped features. Experimental results show that SeDA achieves stronger cross-modal feature alignment, leading to superior performance over existing methods across multiple scenarios.
Abstract:Large language models (LLMs) have achieved remarkable success, yet aligning their generations with human preferences remains a critical challenge. Existing approaches to preference modeling often rely on an explicit or implicit reward function, overlooking the intricate and multifaceted nature of human preferences that may encompass conflicting factors across diverse tasks and populations. To address this limitation, we introduce Latent Preference Coding (LPC), a novel framework that models the implicit factors as well as their combinations behind holistic preferences using discrete latent codes. LPC seamlessly integrates with various offline alignment algorithms, automatically inferring the underlying factors and their importance from data without relying on pre-defined reward functions and hand-crafted combination weights. Extensive experiments on multiple benchmarks demonstrate that LPC consistently improves upon three alignment algorithms (DPO, SimPO, and IPO) using three base models (Mistral-7B, Llama3-8B, and Llama3-8B-Instruct). Furthermore, deeper analysis reveals that the learned latent codes effectively capture the differences in the distribution of human preferences and significantly enhance the robustness of alignment against noise in data. By providing a unified representation for the multifarious preference factors, LPC paves the way towards developing more robust and versatile alignment techniques for the responsible deployment of powerful LLMs.
Abstract:Accurate localization is a challenging task for autonomous vehicles, particularly in GPS-denied environments such as urban canyons and tunnels. In these scenarios, simultaneous localization and mapping (SLAM) offers a more robust alternative to GPS-based positioning, enabling vehicles to determine their position using onboard sensors and surrounding environment's landmarks. Among various vehicle SLAM approaches, Rao-Blackwellized particle filter (RBPF) stands out as one of the most widely adopted methods due to its efficient solution with logarithmic complexity relative to the map size. RBPF approximates the posterior distribution of the vehicle pose using a set of Monte Carlo particles through two main steps: sampling and importance weighting. The key to effective sampling lies in solving a distribution that closely approximates the posterior, known as the sampling distribution, to accelerate convergence. Existing methods typically derive this distribution via linearization, which introduces significant approximation errors due to the inherent nonlinearity of the system. To address this limitation, we propose a novel vehicle SLAM method called \textit{N}atural Gr\textit{a}dient Gaussia\textit{n} Appr\textit{o}ximation (NANO)-SLAM, which avoids linearization errors by modeling the sampling distribution as the solution to an optimization problem over Gaussian parameters and solving it using natural gradient descent. This approach improves the accuracy of the sampling distribution and consequently enhances localization performance. Experimental results on the long-distance Sydney Victoria Park vehicle SLAM dataset show that NANO-SLAM achieves over 50\% improvement in localization accuracy compared to the most widely used vehicle SLAM algorithms, with minimal additional computational cost.
Abstract:A key advantage of Recurrent Neural Networks (RNNs) over Transformers is their linear computational and space complexity enables faster training and inference for long sequences. However, RNNs are fundamentally unable to randomly access historical context, and simply integrating attention mechanisms may undermine their efficiency advantages. To overcome this limitation, we propose \textbf{H}ierarchical \textbf{S}parse \textbf{A}ttention (HSA), a novel attention mechanism that enhances RNNs with long-range random access flexibility while preserving their merits in efficiency and length generalization. HSA divides inputs into chunks, selecting the top-$k$ chunks and hierarchically aggregates information. The core innovation lies in learning token-to-chunk relevance based on fine-grained token-level information inside each chunk. This approach enhances the precision of chunk selection across both in-domain and out-of-domain context lengths. To make HSA efficient, we further introduce a hardware-aligned kernel design. By combining HSA with Mamba, we introduce RAMba, which achieves perfect accuracy in passkey retrieval across 64 million contexts despite pre-training on only 4K-length contexts, and significant improvements on various downstream tasks, with nearly constant memory footprint. These results show RAMba's huge potential in long-context modeling.
Abstract:Long-form video processing fundamentally challenges vision-language models (VLMs) due to the high computational costs of handling extended temporal sequences. Existing token pruning and feature merging methods often sacrifice critical temporal dependencies or dilute semantic information. We introduce differential distillation, a principled approach that systematically preserves task-relevant information while suppressing redundancy. Based on this principle, we develop ViLaMP, a hierarchical video-language model that processes hour-long videos at ``mixed precision'' through two key mechanisms: (1) differential keyframe selection that maximizes query relevance while maintaining temporal distinctiveness at the frame level and (2) differential feature merging that preserves query-salient features in non-keyframes at the patch level. Hence, ViLaMP retains full information in keyframes while reducing non-keyframes to their most salient features, resembling mixed-precision training. Extensive experiments demonstrate ViLaMP's superior performance across four video understanding benchmarks, particularly on long-form content. Notably, ViLaMP can process ultra-long videos (up to 10K frames) on a single NVIDIA A100 GPU, achieving substantial computational efficiency while maintaining state-of-the-art performance.
Abstract:Attribute skew in federated learning leads local models to focus on learning non-causal associations, guiding them towards inconsistent optimization directions, which inevitably results in performance degradation and unstable convergence. Existing methods typically leverage data augmentation to enhance sample diversity or employ knowledge distillation to learn invariant representations. However, the instability in the quality of generated data and the lack of domain information limit their performance on unseen samples. To address these issues, this paper presents a global intervention and distillation method, termed FedGID, which utilizes diverse attribute features for backdoor adjustment to break the spurious association between background and label. It includes two main modules, where the global intervention module adaptively decouples objects and backgrounds in images, injects background information into random samples to intervene in the sample distribution, which links backgrounds to all categories to prevent the model from treating background-label associations as causal. The global distillation module leverages a unified knowledge base to guide the representation learning of client models, preventing local models from overfitting to client-specific attributes. Experimental results on three datasets demonstrate that FedGID enhances the model's ability to focus on the main subjects in unseen data and outperforms existing methods in collaborative modeling.