Abstract:Autonomous vehicles (AVs) are expected to be commercially available in the near future, leading to mixed autonomy traffic consisting of both AVs and human-driven vehicles (HVs). Although numerous studies have shown that AVs can be deployed to benefit the overall traffic system performance by incorporating system-level goals into their decision making, it is not clear whether the benefits still exist when agents act out of self-interest -- a trait common to all driving agents, both human and autonomous. This study aims to understand whether self-interested AVs can bring benefits to all driving agents in mixed autonomy traffic systems. The research is centered on the concept of collective rationality (CR). This concept, originating from game theory and behavioral economics, means that driving agents may cooperate collectively even when pursuing individual interests. Our recent research has proven the existence of CR in an analytical game-theoretical model and empirically in mixed human-driven traffic. In this paper, we demonstrate that CR can be attained among driving agents trained using deep reinforcement learning (DRL) with a simple reward design. We examine the extent to which self-interested traffic agents can achieve CR without directly incorporating system-level objectives. Results show that CR consistently emerges in various scenarios, which indicates the robustness of this property. We also postulate a mechanism to explain the emergence of CR in the microscopic and dynamic environment and verify it based on simulation evidence. This research suggests the possibility of leveraging advanced learning methods (such as federated learning) to achieve collective cooperation among self-interested driving agents in mixed-autonomy systems.
Abstract:Reconstructing Dynamic 3D Gaussian Splatting (3DGS) from low-framerate RGB videos is challenging. This is because large inter-frame motions will increase the uncertainty of the solution space. For example, one pixel in the first frame might have more choices to reach the corresponding pixel in the second frame. Event cameras can asynchronously capture rapid visual changes and are robust to motion blur, but they do not provide color information. Intuitively, the event stream can provide deterministic constraints for the inter-frame large motion by the event trajectories. Hence, combining low-temporal-resolution images with high-framerate event streams can address this challenge. However, it is challenging to jointly optimize Dynamic 3DGS using both RGB and event modalities due to the significant discrepancy between these two data modalities. This paper introduces a novel framework that jointly optimizes dynamic 3DGS from the two modalities. The key idea is to adopt event motion priors to guide the optimization of the deformation fields. First, we extract the motion priors encoded in event streams by using the proposed LoCM unsupervised fine-tuning framework to adapt an event flow estimator to a certain unseen scene. Then, we present the geometry-aware data association method to build the event-Gaussian motion correspondence, which is the primary foundation of the pipeline, accompanied by two useful strategies, namely motion decomposition and inter-frame pseudo-label. Extensive experiments show that our method outperforms existing image and event-based approaches across synthetic and real scenes and prove that our method can effectively optimize dynamic 3DGS with the help of event data.
Abstract:Software automation has long been a central goal of software engineering, striving for software development that proceeds without human intervention. Recent efforts have leveraged Artificial Intelligence (AI) to advance software automation with notable progress. However, current AI functions primarily as assistants to human developers, leaving software development still dependent on explicit human intervention. This raises a fundamental question: Can AI move beyond its role as an assistant to become a core component of software, thereby enabling genuine software automation? To investigate this vision, we introduce AI-Driven Self-Evolving Software, a new form of software that evolves continuously through direct interaction with users. We demonstrate the feasibility of this idea with a lightweight prototype built on a multi-agent architecture that autonomously interprets user requirements, generates and validates code, and integrates new functionalities. Case studies across multiple representative scenarios show that the prototype can reliably construct and reuse functionality, providing early evidence that such software systems can scale to more sophisticated applications and pave the way toward truly automated software development. We make code and cases in this work publicly available at https://anonymous.4open.science/r/live-software.
Abstract:Following language instructions, vision-language navigation (VLN) agents are tasked with navigating unseen environments. While augmenting multifaceted visual representations has propelled advancements in VLN, the significance of foreground and background in visual observations remains underexplored. Intuitively, foreground regions provide semantic cues, whereas the background encompasses spatial connectivity information. Inspired on this insight, we propose a Consensus-driven Online Feature Augmentation strategy (COFA) with alternative foreground and background features to facilitate the navigable generalization. Specifically, we first leverage semantically-enhanced landmark identification to disentangle foreground and background as candidate augmented features. Subsequently, a consensus-driven online augmentation strategy encourages the agent to consolidate two-stage voting results on feature preferences according to diverse instructions and navigational locations. Experiments on REVERIE and R2R demonstrate that our online foreground-background augmentation boosts the generalization of baseline and attains state-of-the-art performance.
Abstract:The rapid advancement of Large Language Models (LLMs) has given rise to a novel software development paradigm known as "vibe coding," where users interact with coding agents through high-level natural language. However, existing evaluation benchmarks for code generation inadequately assess an agent's vibe coding capabilities. Existing benchmarks are misaligned, as they either require code-level specifications or focus narrowly on issue-solving, neglecting the critical scenario of feature implementation within the vibe coding paradiam. To address this gap, we propose FeatBench, a novel benchmark for vibe coding that focuses on feature implementation. Our benchmark is distinguished by several key features: 1. Pure Natural Language Prompts. Task inputs consist solely of abstract natural language descriptions, devoid of any code or structural hints. 2. A Rigorous & Evolving Data Collection Process. FeatBench is built on a multi-level filtering pipeline to ensure quality and a fully automated pipeline to evolve the benchmark, mitigating data contamination. 3. Comprehensive Test Cases. Each task includes Fail-to-Pass (F2P) and Pass-to-Pass (P2P) tests to verify correctness and prevent regressions. 4. Diverse Application Domains. The benchmark includes repositories from diverse domains to ensure it reflects real-world scenarios. We evaluate two state-of-the-art agent frameworks with four leading LLMs on FeatBench. Our evaluation reveals that feature implementation within the vibe coding paradigm is a significant challenge, with the highest success rate of only 29.94%. Our analysis also reveals a tendency for "aggressive implementation," a strategy that paradoxically leads to both critical failures and superior software design. We release FeatBench, our automated collection pipeline, and all experimental results to facilitate further community research.




Abstract:Graph Retrieval-Augmented Generation (GraphRAG) enhances factual reasoning in LLMs by structurally modeling knowledge through graph-based representations. However, existing GraphRAG approaches face two core limitations: shallow retrieval that fails to surface all critical evidence, and inefficient utilization of pre-constructed structural graph data, which hinders effective reasoning from complex queries. To address these challenges, we propose \textsc{GraphSearch}, a novel agentic deep searching workflow with dual-channel retrieval for GraphRAG. \textsc{GraphSearch} organizes the retrieval process into a modular framework comprising six modules, enabling multi-turn interactions and iterative reasoning. Furthermore, \textsc{GraphSearch} adopts a dual-channel retrieval strategy that issues semantic queries over chunk-based text data and relational queries over structural graph data, enabling comprehensive utilization of both modalities and their complementary strengths. Experimental results across six multi-hop RAG benchmarks demonstrate that \textsc{GraphSearch} consistently improves answer accuracy and generation quality over the traditional strategy, confirming \textsc{GraphSearch} as a promising direction for advancing graph retrieval-augmented generation.




Abstract:Accurate engagement estimation is essential for adaptive human-computer interaction systems, yet robust deployment is hindered by poor generalizability across diverse domains and challenges in modeling complex interaction dynamics.To tackle these issues, we propose DAPA (Domain-Adaptive Parallel Attention), a novel framework for generalizable conversational engagement modeling. DAPA introduces a Domain Prompting mechanism by prepending learnable domain-specific vectors to the input, explicitly conditioning the model on the data's origin to facilitate domain-aware adaptation while preserving generalizable engagement representations. To capture interactional synchrony, the framework also incorporates a Parallel Cross-Attention module that explicitly aligns reactive (forward BiLSTM) and anticipatory (backward BiLSTM) states between participants.Extensive experiments demonstrate that DAPA establishes a new state-of-the-art performance on several cross-cultural and cross-linguistic benchmarks, notably achieving an absolute improvement of 0.45 in Concordance Correlation Coefficient (CCC) over a strong baseline on the NoXi-J test set. The superiority of our method was also confirmed by winning the first place in the Multi-Domain Engagement Estimation Challenge at MultiMediate'25.




Abstract:Geometry problems are a crucial testbed for AI reasoning capabilities. Most existing geometry solving systems cannot express problems within a unified framework, thus are difficult to integrate with other mathematical fields. Besides, since most geometric proofs rely on intuitive diagrams, verifying geometry problems is particularly challenging. To address these gaps, we introduce LeanGeo, a unified formal system for formalizing and solving competition-level geometry problems within the Lean 4 theorem prover. LeanGeo features a comprehensive library of high-level geometric theorems with Lean's foundational logic, enabling rigorous proof verification and seamless integration with Mathlib. We also present LeanGeo-Bench, a formal geometry benchmark in LeanGeo, comprising problems from the International Mathematical Olympiad (IMO) and other advanced sources. Our evaluation demonstrates the capabilities and limitations of state-of-the-art Large Language Models on this benchmark, highlighting the need for further advancements in automated geometric reasoning. We open source the theorem library and the benchmark of LeanGeo at https://github.com/project-numina/LeanGeo/tree/master.
Abstract:Out-of-distribution (OoD) detection and segmentation have attracted growing attention as concerns about AI security rise. Conventional OoD detection methods identify the existence of OoD objects but lack spatial localization, limiting their usefulness in downstream tasks. OoD segmentation addresses this limitation by localizing anomalous objects at pixel-level granularity. This capability is crucial for safety-critical applications such as autonomous driving, where perception modules must not only detect but also precisely segment OoD objects, enabling targeted control actions and enhancing overall system robustness. In this survey, we group current OoD segmentation approaches into four categories: (i) test-time OoD segmentation, (ii) outlier exposure for supervised training, (iii) reconstruction-based methods, (iv) and approaches that leverage powerful models. We systematically review recent advances in OoD segmentation for autonomous-driving scenarios, identify emerging challenges, and discuss promising future research directions.
Abstract:Reinforcement learning with verifiable reward (RLVR) has become a promising paradigm for post-training large language models (LLMs) to improve their reasoning capability. However, when the rollout accuracy is low on hard problems, the reward becomes sparse, limiting learning efficiency and causing exploration bottlenecks. Existing approaches either rely on stronger LLMs for distillation or filter out difficult problems, which limits scalability or restricts reasoning improvement through exploration. We propose EvoCoT, a self-evolving curriculum learning framework based on two-stage chain-of-thought (CoT) reasoning optimization. EvoCoT constrains the exploration space by self-generating and verifying CoT trajectories, then gradually shortens them to expand the space in a controlled way. This enables LLMs to stably learn from initially unsolved hard problems under sparse rewards. We apply EvoCoT to multiple LLM families, including Qwen, DeepSeek, and Llama. Experiments show that EvoCoT enables LLMs to solve previously unsolved problems, improves reasoning capability without external CoT supervision, and is compatible with various RL fine-tuning methods. We release the source code to support future research.