Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
NoPeek: Information leakage reduction to share activations in distributed deep learning

Aug 20, 2020
Praneeth Vepakomma, Abhishek Singh, Otkrist Gupta, Ramesh Raskar


  Access Paper or Ask Questions

SplitNN-driven Vertical Partitioning

Aug 07, 2020
Iker Ceballos, Vivek Sharma, Eduardo Mugica, Abhishek Singh, Alberto Roman, Praneeth Vepakomma, Ramesh Raskar

* First version, please provide feedback 

  Access Paper or Ask Questions

FedML: A Research Library and Benchmark for Federated Machine Learning

Jul 27, 2020
Chaoyang He, Songze Li, Jinhyun So, Mi Zhang, Hongyi Wang, Xiaoyang Wang, Praneeth Vepakomma, Abhishek Singh, Hang Qiu, Li Shen, Peilin Zhao, Yan Kang, Yang Liu, Ramesh Raskar, Qiang Yang, Murali Annavaram, Salman Avestimehr

* We maintain the source code, documents, and user community at https://fedml.ai 

  Access Paper or Ask Questions

Splintering with distributions: A stochastic decoy scheme for private computation

Jul 07, 2020
Praneeth Vepakomma, Julia Balla, Ramesh Raskar

* 28 pages, 6 figures 

  Access Paper or Ask Questions

Privacy in Deep Learning: A Survey

May 09, 2020
Fatemehsadat Mireshghallah, Mohammadkazem Taram, Praneeth Vepakomma, Abhishek Singh, Ramesh Raskar, Hadi Esmaeilzadeh


  Access Paper or Ask Questions

Split Learning for collaborative deep learning in healthcare

Dec 27, 2019
Maarten G. Poirot, Praneeth Vepakomma, Ken Chang, Jayashree Kalpathy-Cramer, Rajiv Gupta, Ramesh Raskar

* Workshop paper: 8 pages, 2 figures, 1 table 

  Access Paper or Ask Questions

Advances and Open Problems in Federated Learning

Dec 10, 2019
Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D'Oliveira, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, Sen Zhao


  Access Paper or Ask Questions

ExpertMatcher: Automating ML Model Selection for Clients using Hidden Representations

Oct 09, 2019
Vivek Sharma, Praneeth Vepakomma, Tristan Swedish, Ken Chang, Jayashree Kalpathy-Cramer, Ramesh Raskar

* In NeurIPS Workshop on Robust AI in Financial Services: Data, Fairness, Explainability, Trustworthiness, and Privacy, 2019 

  Access Paper or Ask Questions

ExpertMatcher: Automating ML Model Selection for Users in Resource Constrained Countries

Oct 05, 2019
Vivek Sharma, Praneeth Vepakomma, Tristan Swedish, Ken Chang, Jayashree Kalpathy-Cramer, Ramesh Raskar

* In NeurIPS Workshop on Machine learning for the Developing World (ML4D) 

  Access Paper or Ask Questions

Maximal adversarial perturbations for obfuscation: Hiding certain attributes while preserving rest

Sep 27, 2019
Indu Ilanchezian, Praneeth Vepakomma, Abhishek Singh, Otkrist Gupta, G. N. Srinivasa Prasanna, Ramesh Raskar


  Access Paper or Ask Questions

Detailed comparison of communication efficiency of split learning and federated learning

Sep 18, 2019
Abhishek Singh, Praneeth Vepakomma, Otkrist Gupta, Ramesh Raskar


  Access Paper or Ask Questions

Data Markets to support AI for All: Pricing, Valuation and Governance

May 14, 2019
Ramesh Raskar, Praneeth Vepakomma, Tristan Swedish, Aalekh Sharan

* 7 pages, 2 figures 

  Access Paper or Ask Questions

No Peek: A Survey of private distributed deep learning

Dec 08, 2018
Praneeth Vepakomma, Tristan Swedish, Ramesh Raskar, Otkrist Gupta, Abhimanyu Dubey

* 21 pages 

  Access Paper or Ask Questions

Split learning for health: Distributed deep learning without sharing raw patient data

Dec 03, 2018
Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, Ramesh Raskar


  Access Paper or Ask Questions

DISCOMAX: A Proximity-Preserving Distance Correlation Maximization Algorithm

Feb 17, 2017
Praneeth Vepakomma, Ahmed Elgammal

* Withdrawing as an updated and enhanced version of this paper is on arxiv under my name as well titled Supervised Dimensionality Reduction via Distance Correlation Maximization. See arXiv:1601.00236. That makes this version pointless 

  Access Paper or Ask Questions

Optimal bandwidth estimation for a fast manifold learning algorithm to detect circular structure in high-dimensional data

Dec 28, 2016
Susovan Pal, Praneeth Vepakomma

* 19 pages 

  Access Paper or Ask Questions

Supervised Dimensionality Reduction via Distance Correlation Maximization

Jan 03, 2016
Praneeth Vepakomma, Chetan Tonde, Ahmed Elgammal

* 23 pages, 6 figures 

  Access Paper or Ask Questions