Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Differentially Private CutMix for Split Learning with Vision Transformer


Oct 28, 2022
Seungeun Oh, Jihong Park, Sihun Baek, Hyelin Nam, Praneeth Vepakomma, Ramesh Raskar, Mehdi Bennis, Seong-Lyun Kim

* to be presented at the 36nd Conference on Neural Information Processing Systems (NeurIPS 2022), First Workshop on Interpolation Regularizers and Beyond (INTERPOLATE), New Orleans, United States 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Differentially Private Fréchet Mean on the Manifold of Symmetric Positive Definite (SPD) Matrices


Aug 08, 2022
Saiteja Utpala, Praneeth Vepakomma, Nina Miolane

* 28 pages 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Private independence testing across two parties


Jul 08, 2022
Praneeth Vepakomma, Mohammad Mohammadi Amiri, Clément L. Canonne, Ramesh Raskar, Alex Pentland

* 16 pages 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Visual Transformer Meets CutMix for Improved Accuracy, Communication Efficiency, and Data Privacy in Split Learning


Jul 01, 2022
Sihun Baek, Jihong Park, Praneeth Vepakomma, Ramesh Raskar, Mehdi Bennis, Seong-Lyun Kim

* won the Best Student Paper Award at International Workshop on Trustworthy Federated Learning in Conjunction with IJCAI 2022 (FL-IJCAI'22), Vienna, Austria 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Decouple-and-Sample: Protecting sensitive information in task agnostic data release


Mar 17, 2022
Abhishek Singh, Ethan Garza, Ayush Chopra, Praneeth Vepakomma, Vivek Sharma, Ramesh Raskar

* Preprint 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Server-Side Local Gradient Averaging and Learning Rate Acceleration for Scalable Split Learning


Dec 11, 2021
Shraman Pal, Mansi Uniyal, Jihong Park, Praneeth Vepakomma, Ramesh Raskar, Mehdi Bennis, Moongu Jeon, Jinho Choi

* 9 pages, 3 figures, 6 tables 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

AdaSplit: Adaptive Trade-offs for Resource-constrained Distributed Deep Learning


Dec 02, 2021
Ayush Chopra, Surya Kant Sahu, Abhishek Singh, Abhinav Java, Praneeth Vepakomma, Vivek Sharma, Ramesh Raskar


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Private measurement of nonlinear correlations between data hosted across multiple parties


Nov 08, 2021
Praneeth Vepakomma, Subha Nawer Pushpita, Ramesh Raskar


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Parallel Quasi-concave set optimization: A new frontier that scales without needing submodularity


Aug 19, 2021
Praneeth Vepakomma, Yulia Kempner, Ramesh Raskar

* SubSetML: Subset Selection in Machine Learning: From Theory to Practice 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
3
4
>>