Abstract:Recent advancements in codebook-based real image super-resolution (SR) have shown promising results in real-world applications. The core idea involves matching high-quality image features from a codebook based on low-resolution (LR) image features. However, existing methods face two major challenges: inaccurate feature matching with the codebook and poor texture detail reconstruction. To address these issues, we propose a novel Uncertainty-Guided and Top-k Codebook Matching SR (UGTSR) framework, which incorporates three key components: (1) an uncertainty learning mechanism that guides the model to focus on texture-rich regions, (2) a Top-k feature matching strategy that enhances feature matching accuracy by fusing multiple candidate features, and (3) an Align-Attention module that enhances the alignment of information between LR and HR features. Experimental results demonstrate significant improvements in texture realism and reconstruction fidelity compared to existing methods. We will release the code upon formal publication.
Abstract:Prior methodologies have disregarded the diversities among distinct degradation types during image reconstruction, employing a uniform network model to handle multiple deteriorations. Nevertheless, we discover that prevalent degradation modalities, including sampling, blurring, and noise, can be roughly categorized into two classes. We classify the first class as spatial-agnostic dominant degradations, less affected by regional changes in image space, such as downsampling and noise degradation. The second class degradation type is intimately associated with the spatial position of the image, such as blurring, and we identify them as spatial-specific dominant degradations. We introduce a dynamic filter network integrating global and local branches to address these two degradation types. This network can greatly alleviate the practical degradation problem. Specifically, the global dynamic filtering layer can perceive the spatial-agnostic dominant degradation in different images by applying weights generated by the attention mechanism to multiple parallel standard convolution kernels, enhancing the network's representation ability. Meanwhile, the local dynamic filtering layer converts feature maps of the image into a spatially specific dynamic filtering operator, which performs spatially specific convolution operations on the image features to handle spatial-specific dominant degradations. By effectively integrating both global and local dynamic filtering operators, our proposed method outperforms state-of-the-art blind super-resolution algorithms in both synthetic and real image datasets.
Abstract:Omnidirectional image and video super-resolution is a crucial research topic in low-level vision, playing an essential role in virtual reality and augmented reality applications. Its goal is to reconstruct high-resolution images or video frames from low-resolution inputs, thereby enhancing detail preservation and enabling more accurate scene analysis and interpretation. In recent years, numerous innovative and effective approaches have been proposed, predominantly based on deep learning techniques, involving diverse network architectures, loss functions, projection strategies, and training datasets. This paper presents a systematic review of recent progress in omnidirectional image and video super-resolution, focusing on deep learning-based methods. Given that existing datasets predominantly rely on synthetic degradation and fall short in capturing real-world distortions, we introduce a new dataset, 360Insta, that comprises authentically degraded omnidirectional images and videos collected under diverse conditions, including varying lighting, motion, and exposure settings. This dataset addresses a critical gap in current omnidirectional benchmarks and enables more robust evaluation of the generalization capabilities of omnidirectional super-resolution methods. We conduct comprehensive qualitative and quantitative evaluations of existing methods on both public datasets and our proposed dataset. Furthermore, we provide a systematic overview of the current status of research and discuss promising directions for future exploration. All datasets, methods, and evaluation metrics introduced in this work are publicly available and will be regularly updated. Project page: https://github.com/nqian1/Survey-on-ODISR-and-ODVSR.
Abstract:Novel view synthesis for underwater scene reconstruction presents unique challenges due to complex light-media interactions. Optical scattering and absorption in water body bring inhomogeneous medium attenuation interference that disrupts conventional volume rendering assumptions of uniform propagation medium. While 3D Gaussian Splatting (3DGS) offers real-time rendering capabilities, it struggles with underwater inhomogeneous environments where scattering media introduce artifacts and inconsistent appearance. In this study, we propose a physics-based framework that disentangles object appearance from water medium effects through tailored Gaussian modeling. Our approach introduces appearance embeddings, which are explicit medium representations for backscatter and attenuation, enhancing scene consistency. In addition, we propose a distance-guided optimization strategy that leverages pseudo-depth maps as supervision with depth regularization and scale penalty terms to improve geometric fidelity. By integrating the proposed appearance and medium modeling components via an underwater imaging model, our approach achieves both high-quality novel view synthesis and physically accurate scene restoration. Experiments demonstrate our significant improvements in rendering quality and restoration accuracy over existing methods. The project page is available at https://bilityniu.github.io/3D-UIR.
Abstract:We present DIPO, a novel framework for the controllable generation of articulated 3D objects from a pair of images: one depicting the object in a resting state and the other in an articulated state. Compared to the single-image approach, our dual-image input imposes only a modest overhead for data collection, but at the same time provides important motion information, which is a reliable guide for predicting kinematic relationships between parts. Specifically, we propose a dual-image diffusion model that captures relationships between the image pair to generate part layouts and joint parameters. In addition, we introduce a Chain-of-Thought (CoT) based graph reasoner that explicitly infers part connectivity relationships. To further improve robustness and generalization on complex articulated objects, we develop a fully automated dataset expansion pipeline, name LEGO-Art, that enriches the diversity and complexity of PartNet-Mobility dataset. We propose PM-X, a large-scale dataset of complex articulated 3D objects, accompanied by rendered images, URDF annotations, and textual descriptions. Extensive experiments demonstrate that DIPO significantly outperforms existing baselines in both the resting state and the articulated state, while the proposed PM-X dataset further enhances generalization to diverse and structurally complex articulated objects. Our code and dataset will be released to the community upon publication.
Abstract:This paper reports on the NTIRE 2025 challenge on Text to Image (T2I) generation model quality assessment, which will be held in conjunction with the New Trends in Image Restoration and Enhancement Workshop (NTIRE) at CVPR 2025. The aim of this challenge is to address the fine-grained quality assessment of text-to-image generation models. This challenge evaluates text-to-image models from two aspects: image-text alignment and image structural distortion detection, and is divided into the alignment track and the structural track. The alignment track uses the EvalMuse-40K, which contains around 40K AI-Generated Images (AIGIs) generated by 20 popular generative models. The alignment track has a total of 371 registered participants. A total of 1,883 submissions are received in the development phase, and 507 submissions are received in the test phase. Finally, 12 participating teams submitted their models and fact sheets. The structure track uses the EvalMuse-Structure, which contains 10,000 AI-Generated Images (AIGIs) with corresponding structural distortion mask. A total of 211 participants have registered in the structure track. A total of 1155 submissions are received in the development phase, and 487 submissions are received in the test phase. Finally, 8 participating teams submitted their models and fact sheets. Almost all methods have achieved better results than baseline methods, and the winning methods in both tracks have demonstrated superior prediction performance on T2I model quality assessment.
Abstract:Denoising is a crucial step in many video processing pipelines such as in interactive editing, where high quality, speed, and user control are essential. While recent approaches achieve significant improvements in denoising quality by leveraging deep learning, they are prone to unexpected failures due to discrepancies between training data distributions and the wide variety of noise patterns found in real-world videos. These methods also tend to be slow and lack user control. In contrast, traditional denoising methods perform reliably on in-the-wild videos and run relatively quickly on modern hardware. However, they require manually tuning parameters for each input video, which is not only tedious but also requires skill. We bridge the gap between these two paradigms by proposing a differentiable denoising pipeline based on traditional methods. A neural network is then trained to predict the optimal denoising parameters for each specific input, resulting in a robust and efficient approach that also supports user control.
Abstract:Recently, Text-to-Image (T2I) generation models have achieved significant advancements. Correspondingly, many automated metrics have emerged to evaluate the image-text alignment capabilities of generative models. However, the performance comparison among these automated metrics is limited by existing small datasets. Additionally, these datasets lack the capacity to assess the performance of automated metrics at a fine-grained level. In this study, we contribute an EvalMuse-40K benchmark, gathering 40K image-text pairs with fine-grained human annotations for image-text alignment-related tasks. In the construction process, we employ various strategies such as balanced prompt sampling and data re-annotation to ensure the diversity and reliability of our benchmark. This allows us to comprehensively evaluate the effectiveness of image-text alignment metrics for T2I models. Meanwhile, we introduce two new methods to evaluate the image-text alignment capabilities of T2I models: FGA-BLIP2 which involves end-to-end fine-tuning of a vision-language model to produce fine-grained image-text alignment scores and PN-VQA which adopts a novel positive-negative VQA manner in VQA models for zero-shot fine-grained evaluation. Both methods achieve impressive performance in image-text alignment evaluations. We also use our methods to rank current AIGC models, in which the results can serve as a reference source for future study and promote the development of T2I generation. The data and code will be made publicly available.
Abstract:Image retouching aims to enhance the visual quality of photos. Considering the different aesthetic preferences of users, the target of retouching is subjective. However, current retouching methods mostly adopt deterministic models, which not only neglects the style diversity in the expert-retouched results and tends to learn an average style during training, but also lacks sample diversity during inference. In this paper, we propose a diffusion-based method, named DiffRetouch. Thanks to the excellent distribution modeling ability of diffusion, our method can capture the complex fine-retouched distribution covering various visual-pleasing styles in the training data. Moreover, four image attributes are made adjustable to provide a user-friendly editing mechanism. By adjusting these attributes in specified ranges, users are allowed to customize preferred styles within the learned fine-retouched distribution. Additionally, the affine bilateral grid and contrastive learning scheme are introduced to handle the problem of texture distortion and control insensitivity respectively. Extensive experiments have demonstrated the superior performance of our method on visually appealing and sample diversity. The code will be made available to the community.
Abstract:The increasing demand for computational photography and imaging on mobile platforms has led to the widespread development and integration of advanced image sensors with novel algorithms in camera systems. However, the scarcity of high-quality data for research and the rare opportunity for in-depth exchange of views from industry and academia constrain the development of mobile intelligent photography and imaging (MIPI). Building on the achievements of the previous MIPI Workshops held at ECCV 2022 and CVPR 2023, we introduce our third MIPI challenge including three tracks focusing on novel image sensors and imaging algorithms. In this paper, we summarize and review the Few-shot RAW Image Denoising track on MIPI 2024. In total, 165 participants were successfully registered, and 7 teams submitted results in the final testing phase. The developed solutions in this challenge achieved state-of-the-art erformance on Few-shot RAW Image Denoising. More details of this challenge and the link to the dataset can be found at https://mipichallenge.org/MIPI2024.