Stanford University Department of Electrical Engineering
Abstract:Recent advances in Emotional Support Conversation (ESC) have improved emotional support generation by fine-tuning Large Language Models (LLMs) via Supervised Fine-Tuning (SFT). However, common psychological errors still persist. While Direct Preference Optimization (DPO) shows promise in reducing such errors through pairwise preference learning, its effectiveness in ESC tasks is limited by two key challenges: (1) Entangled data structure: Existing ESC data inherently entangles psychological strategies and response content, making it difficult to construct high-quality preference pairs; and (2) Optimization ambiguity: Applying vanilla DPO to such entangled pairwise data leads to ambiguous training objectives. To address these issues, we introduce Inferential Preference Mining (IPM) to construct high-quality preference data, forming the IPM-PrefDial dataset. Building upon this data, we propose a Decoupled ESC framework inspired by Gross's Extended Process Model of Emotion Regulation, which decomposes the ESC task into two sequential subtasks: strategy planning and empathic response generation. Each was trained via SFT and subsequently enhanced by DPO to align with the psychological preference. Extensive experiments demonstrate that our Decoupled ESC framework outperforms joint optimization baselines, reducing preference bias and improving response quality.
Abstract:Despite significant advances in large language models (LLMs), their knowledge memorization capabilities remain underexplored, due to the lack of standardized and high-quality test ground. In this paper, we introduce a novel, real-world and large-scale knowledge injection benchmark that evolves continuously over time without requiring human intervention. Specifically, we propose WikiDYK, which leverages recently-added and human-written facts from Wikipedia's "Did You Know..." entries. These entries are carefully selected by expert Wikipedia editors based on criteria such as verifiability and clarity. Each entry is converted into multiple question-answer pairs spanning diverse task formats from easy cloze prompts to complex multi-hop questions. WikiDYK contains 12,290 facts and 77,180 questions, which is also seamlessly extensible with future updates from Wikipedia editors. Extensive experiments using continued pre-training reveal a surprising insight: despite their prevalence in modern LLMs, Causal Language Models (CLMs) demonstrate significantly weaker knowledge memorization capabilities compared to Bidirectional Language Models (BiLMs), exhibiting a 23% lower accuracy in terms of reliability. To compensate for the smaller scales of current BiLMs, we introduce a modular collaborative framework utilizing ensembles of BiLMs as external knowledge repositories to integrate with LLMs. Experiment shows that our framework further improves the reliability accuracy by up to 29.1%.
Abstract:Natural Language to SQL (NL2SQL) has emerged as a critical task for enabling seamless interaction with databases. Recent advancements in Large Language Models (LLMs) have demonstrated remarkable performance in this domain. However, existing NL2SQL methods predominantly rely on closed-source LLMs leveraging prompt engineering, while open-source models typically require fine-tuning to acquire domain-specific knowledge. Despite these efforts, open-source LLMs struggle with complex NL2SQL tasks due to the indirect expression of user query objectives and the semantic gap between user queries and database schemas. Inspired by the application of reinforcement learning in mathematical problem-solving to encourage step-by-step reasoning in LLMs, we propose LearNAT (Learning NL2SQL with AST-guided Task Decomposition), a novel framework that improves the performance of open-source LLMs on complex NL2SQL tasks through task decomposition and reinforcement learning. LearNAT introduces three key components: (1) a Decomposition Synthesis Procedure that leverages Abstract Syntax Trees (ASTs) to guide efficient search and pruning strategies for task decomposition, (2) Margin-aware Reinforcement Learning, which employs fine-grained step-level optimization via DPO with AST margins, and (3) Adaptive Demonstration Reasoning, a mechanism for dynamically selecting relevant examples to enhance decomposition capabilities. Extensive experiments on two benchmark datasets, Spider and BIRD, demonstrate that LearNAT enables a 7B-parameter open-source LLM to achieve performance comparable to GPT-4, while offering improved efficiency and accessibility.
Abstract:While standard Retrieval-Augmented Generation (RAG) based on chunks, GraphRAG structures knowledge as graphs to leverage the relations among entities. However, previous GraphRAG methods are limited by binary relations: one edge in the graph only connects two entities, which cannot well model the n-ary relations among more than two entities that widely exist in reality. To address this limitation, we propose HyperGraphRAG, a novel hypergraph-based RAG method that represents n-ary relational facts via hyperedges, modeling the complicated n-ary relations in the real world. To retrieve and generate over hypergraphs, we introduce a complete pipeline with a hypergraph construction method, a hypergraph retrieval strategy, and a hypergraph-guided generation mechanism. Experiments across medicine, agriculture, computer science, and law demonstrate that HyperGraphRAG outperforms standard RAG and GraphRAG in accuracy and generation quality.
Abstract:We present TRACE, a novel system for live *common ground* tracking in situated collaborative tasks. With a focus on fast, real-time performance, TRACE tracks the speech, actions, gestures, and visual attention of participants, uses these multimodal inputs to determine the set of task-relevant propositions that have been raised as the dialogue progresses, and tracks the group's epistemic position and beliefs toward them as the task unfolds. Amid increased interest in AI systems that can mediate collaborations, TRACE represents an important step forward for agents that can engage with multiparty, multimodal discourse.
Abstract:The primary objective of learning methods is generalization. Classic uniform generalization bounds, which rely on VC-dimension or Rademacher complexity, fail to explain the significant attribute that over-parameterized models in deep learning exhibit nice generalizability. On the other hand, algorithm-dependent generalization bounds, like stability bounds, often rely on strict assumptions. To establish generalizability under less stringent assumptions, this paper investigates the generalizability of neural networks that minimize or approximately minimize empirical risk. We establish a lower bound for population accuracy based on the expressiveness of these networks, which indicates that with an adequate large number of training samples and network sizes, these networks, including over-parameterized ones, can generalize effectively. Additionally, we provide a necessary condition for generalization, demonstrating that, for certain data distributions, the quantity of training data required to ensure generalization exceeds the network size needed to represent the corresponding data distribution. Finally, we provide theoretical insights into several phenomena in deep learning, including robust generalization, importance of over-parameterization, and effect of loss function on generalization.
Abstract:Wasserstein distributionally robust optimization (WDRO) optimizes against worst-case distributional shifts within a specified uncertainty set, leading to enhanced generalization on unseen adversarial examples, compared to standard adversarial training which focuses on pointwise adversarial perturbations. However, WDRO still suffers fundamentally from the robust overfitting problem, as it does not consider statistical error. We address this gap by proposing a novel robust optimization framework under a new uncertainty set for adversarial noise via Wasserstein distance and statistical error via Kullback-Leibler divergence, called the Statistically Robust WDRO. We establish a robust generalization bound for the new optimization framework, implying that out-of-distribution adversarial performance is at least as good as the statistically robust training loss with high probability. Furthermore, we derive conditions under which Stackelberg and Nash equilibria exist between the learner and the adversary, giving an optimal robust model in certain sense. Finally, through extensive experiments, we demonstrate that our method significantly mitigates robust overfitting and enhances robustness within the framework of WDRO.
Abstract:In order to streamline the fine-tuning of foundation models, Low-Rank Adapters (LoRAs) have been substantially adopted across various fields, including instruction tuning and domain adaptation. The underlying concept of LoRA involves decomposing a full-rank matrix into the product of two lower-rank matrices, which reduces storage consumption and accelerates the training process. Furthermore, to address the limited expressive capacity of LoRA, the Mixture-of-Expert (MoE) has been introduced for incorporating multiple LoRA adapters. The integration of LoRA experts leads to a visible improvement across several downstream scenes. However, the mixture of LoRAs (MoE-LoRA) still exhibits its low robustness during tuning and inferring. Inspired by the Riemannian Preconditioners which train LoRA as a sub-space projector, we propose a new training strategy for MoE-LoRA, to stabilize and boost its feature learning procedure by multi-space projections. Examinations on SGD and AdamW optimizers demonstrate the effectiveness of our methodology. Source code is available at https://github.com/THUDM/MoELoRA_Riemannian.
Abstract:The Text-to-SQL(Text2SQL) task aims to convert natural language queries into executable SQL queries. Thanks to the application of large language models (LLMs), significant progress has been made in this field. However, challenges such as model scalability, limited generation space, and coherence issues in SQL generation still persist. To address these issues, we propose SQL-o1, a Self-Reward-based heuristic search method designed to enhance the reasoning ability of LLMs in SQL query generation. SQL-o1 combines Monte Carlo Tree Search (MCTS) for heuristic process-level search and constructs a Schema-Aware dataset to help the model better understand database schemas. Extensive experiments on the Bird and Spider datasets demonstrate that SQL-o1 improves execution accuracy by 10.8\% on the complex Bird dataset compared to the latest baseline methods, even outperforming GPT-4-based approaches. Additionally, SQL-o1 excels in few-shot learning scenarios and shows strong cross-model transferability. Our code is publicly available at:https://github.com/ShuaiLyu0110/SQL-o1.
Abstract:Knowledge Base Question Answering (KBQA) aims to answer natural language questions with a large-scale structured knowledge base (KB). Despite advancements with large language models (LLMs), KBQA still faces challenges in weak KB awareness, imbalance between effectiveness and efficiency, and high reliance on annotated data. To address these challenges, we propose KBQA-o1, a novel agentic KBQA method with Monte Carlo Tree Search (MCTS). It introduces a ReAct-based agent process for stepwise logical form generation with KB environment exploration. Moreover, it employs MCTS, a heuristic search method driven by policy and reward models, to balance agentic exploration's performance and search space. With heuristic exploration, KBQA-o1 generates high-quality annotations for further improvement by incremental fine-tuning. Experimental results show that KBQA-o1 outperforms previous low-resource KBQA methods with limited annotated data, boosting Llama-3.1-8B model's GrailQA F1 performance to 78.5% compared to 48.5% of the previous sota method with GPT-3.5-turbo.