Abstract:Unified Structured Knowledge Reasoning (USKR) aims to answer natural language questions (NLQs) by using structured sources such as tables, databases, and knowledge graphs in a unified way. Existing USKR methods either rely on employing task-specific strategies or custom-defined representations, which struggle to leverage the knowledge transfer between different SKR tasks or align with the prior of LLMs, thereby limiting their performance. This paper proposes a novel USKR framework named \textsc{Pandora}, which takes advantage of \textsc{Python}'s \textsc{Pandas} API to construct a unified knowledge representation for alignment with LLM pre-training. It employs an LLM to generate textual reasoning steps and executable Python code for each question. Demonstrations are drawn from a memory of training examples that cover various SKR tasks, facilitating knowledge transfer. Extensive experiments on four benchmarks involving three SKR tasks demonstrate that \textsc{Pandora} outperforms existing unified frameworks and competes effectively with task-specific methods.
Abstract:While large language models (LLMs) have revolutionized text-to-speech (TTS) synthesis through discrete tokenization paradigms, current architectures exhibit fundamental tensions between three critical dimensions: 1) irreversible loss of acoustic characteristics caused by quantization of speech prompts; 2) stringent dependence on precisely aligned prompt speech-text pairs that limit real-world deployment; and 3) catastrophic forgetting of the LLM's native text comprehension during optimization for speech token generation. To address these challenges, we propose an LLM-based text-to-speech Generation approach Optimized via a novel dual-branch ArchiTecture (GOAT-TTS). Our framework introduces two key innovations: (1) The modality-alignment branch combines a speech encoder and projector to capture continuous acoustic embeddings, enabling bidirectional correlation between paralinguistic features (language, timbre, emotion) and semantic text representations without transcript dependency; (2) The speech-generation branch employs modular fine-tuning on top-k layers of an LLM for speech token prediction while freezing the bottom-k layers to preserve foundational linguistic knowledge. Moreover, multi-token prediction is introduced to support real-time streaming TTS synthesis. Experimental results demonstrate that our GOAT-TTS achieves performance comparable to state-of-the-art TTS models while validating the efficacy of synthesized dialect speech data.
Abstract:Despite exceptional capabilities, Large Language Models (LLMs) still face deployment challenges due to their enormous size. Post-training structured pruning is a promising solution that prunes LLMs without the need for retraining, reducing computational overhead, and it is hardware-deployment friendly. However, the training-free nature of post-training structured pruning leads to significant performance degradation. We argue that the key to mitigating this issue lies in accurately determining the pruning rate for each layer. Meanwhile, we find that LLMs may have prior knowledge about their own redundancy. Based on this insight, we introduce $\textbf{Self-Pruner}$ an end-to-end automatic self-pruning framework for LLMs, which efficiently search layer-wise pruning rates. Specifically, $\textbf{Self-Pruner}$ leverages LLMs to autonomously execute the entire evolutionary search process to search for pruning rate configurations. In this process, LLMs are used to generate populations, select parent solutions from the current population, and perform crossover and mutation operations to produce offspring solutions. In this way, LLMs automatically generate and evaluate a large number of candidate solutions, effectively converging to find the pruning rate configurations with minimal human intervention. Extensive experiments demonstrate $\textbf{Self-Pruner}$'s better performance compared to existing state-of-the-art methods. Notably, $\textbf{Self-Pruner}$ prunes LLaMA-2-70B to 49B level with only 0.80$\%$ drop in accuracy across seven commonsense reasoning tasks, achieving a 1.39$\times$ speedup on NVIDIA A100 80GB GPU. Further pruning to 35B level resulted in only a 3.80$\%$ decrease in accuracy while obtaining a 1.70$\times$ speedup.
Abstract:Despite the efficacy of network sparsity in alleviating the deployment strain of Large Language Models (LLMs), it endures significant performance degradation. Applying Low-Rank Adaptation (LoRA) to fine-tune the sparse LLMs offers an intuitive approach to counter this predicament, while it holds shortcomings include: 1) The inability to integrate LoRA weights into sparse LLMs post-training, and 2) Insufficient performance recovery at high sparsity ratios. In this paper, we introduce dynamic Low-rank Sparse Adaptation (LoSA), a novel method that seamlessly integrates low-rank adaptation into LLM sparsity within a unified framework, thereby enhancing the performance of sparse LLMs without increasing the inference latency. In particular, LoSA dynamically sparsifies the LoRA outcomes based on the corresponding sparse weights during fine-tuning, thus guaranteeing that the LoRA module can be integrated into the sparse LLMs post-training. Besides, LoSA leverages Representation Mutual Information (RMI) as an indicator to determine the importance of layers, thereby efficiently determining the layer-wise sparsity rates during fine-tuning. Predicated on this, LoSA adjusts the rank of the LoRA module based on the variability in layer-wise reconstruction errors, allocating an appropriate fine-tuning for each layer to reduce the output discrepancies between dense and sparse LLMs. Extensive experiments tell that LoSA can efficiently boost the efficacy of sparse LLMs within a few hours, without introducing any additional inferential burden. For example, LoSA reduced the perplexity of sparse LLaMA-2-7B by 68.73 and increased zero-shot accuracy by 16.32$\%$, achieving a 2.60$\times$ speedup on CPU and 2.23$\times$ speedup on GPU, requiring only 45 minutes of fine-tuning on a single NVIDIA A100 80GB GPU. Code is available at https://github.com/wzhuang-xmu/LoSA.
Abstract:In this paper, we address the challenge of determining the layer-wise sparsity rates of large language models (LLMs) through a theoretical perspective. Specifically, we identify a critical issue of ''$\textbf{reconstruction error explosion}$'' in existing LLMs sparsification methods. This refers to the cumulative effect of reconstruction errors throughout the sparsification process, where errors from earlier layers propagate and amplify in subsequent layers. As a result, the overall reconstruction error increases significantly, leading to a substantial degradation in model performance. Through theoretical analysis, we derive a simple yet effective approach to layer-wise sparsity allocation that mitigates this issue. Our method uses a monotonically increasing arithmetic progression, reducing the process of determining sparsity rates for multiple layers to the determination of a single common difference hyperparameter. Remarkably, this allows for the optimal layer-wise sparsity rates to be identified with just a few trials. Both our theoretical analysis and experimental results demonstrate that this sparsity allocation scheme is near optimal. Extensive experiments show that our method significantly improves the performance of sparse LLMs across various architectures, outperforming existing layer-wise sparsity methods. Furthermore, it enhances the performance of various compression techniques and is applicable to vision and multimodal models. Notably, our method achieves a reduction of 52.10 in perplexity for the 70$\%$ sparse LLaMA2-7B model obtained via Wanda, improves average zero-shot accuracy by 10.50$\%$, and delivers speedups of 2.63$\times$ and 2.23$\times$ on CPU and GPU, respectively.
Abstract:The stories and characters that captivate us as we grow up shape unique fantasy worlds, with images serving as the primary medium for visually experiencing these realms. Personalizing generative models through fine-tuning with theme-specific data has become a prevalent approach in text-to-image generation. However, unlike object customization, which focuses on learning specific objects, theme-specific generation encompasses diverse elements such as characters, scenes, and objects. Such diversity also introduces a key challenge: how to adaptively generate multi-character, multi-concept, and continuous theme-specific images (TSI). Moreover, fine-tuning approaches often come with significant computational overhead, time costs, and risks of overfitting. This paper explores a fundamental question: Can image generation models directly leverage images as contextual input, similarly to how large language models use text as context? To address this, we present T-Prompter, a novel training-free TSI method for generation. T-Prompter introduces visual prompting, a mechanism that integrates reference images into generative models, allowing users to seamlessly specify the target theme without requiring additional training. To further enhance this process, we propose a Dynamic Visual Prompting (DVP) mechanism, which iteratively optimizes visual prompts to improve the accuracy and quality of generated images. Our approach enables diverse applications, including consistent story generation, character design, realistic character generation, and style-guided image generation. Comparative evaluations against state-of-the-art personalization methods demonstrate that T-Prompter achieves significantly better results and excels in maintaining character identity preserving, style consistency and text alignment, offering a robust and flexible solution for theme-specific image generation.
Abstract:Clustered federated learning (CFL) addresses the performance challenges posed by data heterogeneity in federated learning (FL) by organizing edge devices with similar data distributions into clusters, enabling collaborative model training tailored to each group. However, existing CFL approaches strictly limit knowledge sharing to within clusters, lacking the integration of global knowledge with intra-cluster training, which leads to suboptimal performance. Moreover, traditional clustering methods incur significant computational overhead, especially as the number of edge devices increases. In this paper, we propose LCFed, an efficient CFL framework to combat these challenges. By leveraging model partitioning and adopting distinct aggregation strategies for each sub-model, LCFed effectively incorporates global knowledge into intra-cluster co-training, achieving optimal training performance. Additionally, LCFed customizes a computationally efficient model similarity measurement method based on low-rank models, enabling real-time cluster updates with minimal computational overhead. Extensive experiments show that LCFed outperforms state-of-the-art benchmarks in both test accuracy and clustering computational efficiency.
Abstract:Recently, the increasing deployment of LEO satellite systems has enabled various space analytics (e.g., crop and climate monitoring), which heavily relies on the advancements in deep learning (DL). However, the intermittent connectivity between LEO satellites and ground station (GS) significantly hinders the timely transmission of raw data to GS for centralized learning, while the scaled-up DL models hamper distributed learning on resource-constrained LEO satellites. Though split learning (SL) can be a potential solution to these problems by partitioning a model and offloading primary training workload to GS, the labor-intensive labeling process remains an obstacle, with intermittent connectivity and data heterogeneity being other challenges. In this paper, we propose LEO-Split, a semi-supervised (SS) SL design tailored for satellite networks to combat these challenges. Leveraging SS learning to handle (labeled) data scarcity, we construct an auxiliary model to tackle the training failure of the satellite-GS non-contact time. Moreover, we propose a pseudo-labeling algorithm to rectify data imbalances across satellites. Lastly, an adaptive activation interpolation scheme is devised to prevent the overfitting of server-side sub-model training at GS. Extensive experiments with real-world LEO satellite traces (e.g., Starlink) demonstrate that our LEO-Split framework achieves superior performance compared to state-ofthe-art benchmarks.
Abstract:Data-free quantization (DFQ), which facilitates model quantization without real data to address increasing concerns about data security, has garnered significant attention within the model compression community. Recently, the unique architecture of vision transformers (ViTs) has driven the development of specialized DFQ techniques. However, we observe that the synthetic images from existing methods suffer from the deficient semantics issue compared to real images, thereby compromising performance. Motivated by this, we propose SPDFQ, a Semantics Prompting Data-Free Quantization method for ViTs. First, SPDFQ incorporates Attention Priors Alignment (APA), which uses randomly generated attention priors to enhance the semantics of synthetic images. Second, SPDFQ introduces Multi-Semantic Reinforcement (MSR), which utilizes localized patch optimization to prompt efficient parameterization and diverse semantics in synthetic images. Finally, SPDFQ employs Softlabel Learning (SL), where soft learning targets are adapted to encourage more complex semantics and accommodate images augmented by MSR. Experimental results demonstrate that SPDFQ significantly outperforms existing methods. For instance, SPDFQ achieves a 15.52% increase in top-1 accuracy on ImageNet for W4A4 ViT-B
Abstract:Despite the efficiency of prompt learning in transferring vision-language models (VLMs) to downstream tasks, existing methods mainly learn the prompts in a coarse-grained manner where the learned prompt vectors are shared across all categories. Consequently, the tailored prompts often fail to discern class-specific visual concepts, thereby hindering the transferred performance for classes that share similar or complex visual attributes. Recent advances mitigate this challenge by leveraging external knowledge from Large Language Models (LLMs) to furnish class descriptions, yet incurring notable inference costs. In this paper, we introduce TextRefiner, a plug-and-play method to refine the text prompts of existing methods by leveraging the internal knowledge of VLMs. Particularly, TextRefiner builds a novel local cache module to encapsulate fine-grained visual concepts derivedfrom local tokens within the image branch. By aggregating and aligning the cached visual descriptions with the original output of the text branch, TextRefiner can efficiently refine and enrich the learned prompts from existing methods without relying on any external expertise. For example, it improves the performance of CoOp from 71.66 % to 76.94 % on 11 benchmarks, surpassing CoCoOp which introduces instance-wise features for text prompts. Equipped with TextRefiner, PromptKD achieves state-of-the-art performance and is efficient in inference. Our code is relesed at https://github.com/xjjxmu/TextRefiner